
Fig. S1. HD mIL-2/CD25 delays tumor growth in immunogenic tumor models. (A-E) Animals were inoculated with tumors and treated as described in Fig. 1. Tumor growth curves are shown for individual animals treated with either PBS (left) or mIL-2/CD25 (right) in the (A) MC38 model, (B) CT26 model, (C) B16.F10 model, and (D) 4T1 model. (E) Rechallenge experiments were performed as described in Fig. 1 and tumor growth curves are shown. For all tumor growth curves, the number of surviving mice out of the total is shown. MC38 data (n=9-10/group) were pooled from 2 independent experiments. CT26 data (n=32-33/group) were pooled from 5 independent experiments. B16.F10 data (n=15/group) were pooled from 3 independent experiments. 4T1 data (n=6-7/group) were pooled from 2 independent experiments. CT26 rechallenge data (n=17-18/group) were pooled from 4 independent experiments.

Fig. S2. The effects of different doses of S4B6-IL2/IC on CD8⁺ T cells, Tregs, and NK cells. (A) BALB/c and C57BL/6 mice were injected i.p. with various doses of IL-2 complexed with anti-IL-2 clone S4B6, as indicated, compared to PBS and 100 µg mIL-2/CD25. Animals were euthanized 72 hours post-injection and splenocytes were analyzed by flow cytometry. Data shows frequencies of CD8⁺ T cells, NK cells, and Tregs in both strains. (**B**) CD8⁻ T cell to Treg ratios and NK cell to Treg ratios from this experiment are shown. NK cells were defined by CD3⁻CD11b⁺Ly6G⁻CD49b⁺ in BALB/c mice and CD3⁻NK1.1⁺ in C57BL/6 mice. Data (n=3/group) are representative of 1 experiment. Error bars represent mean ± SD.

14

Day

14

Day

0

7 14

0 7 Day

Fig. S3. Expansion of IL-2-targeted cells in the MC38 and B16.F10 models. Turnor-bearing C57BL/6 animals were treated as described in Fig. 2. (A) Frequencies of CD8⁺ T cells, Tregs, and NK cells are shown for PBMCs collected from MC38-bearing mice. (B) Frequencies of CD8⁺ T cells, Tregs, and NK cells are shown for PBMCs collected from B16.F10-bearing mice. Blood data for MC38 (n=5-9/group) and B16.F10 (n=7-8/group) were each pooled from 2 independent experiments and analyzed at each timepoint via Kruskal-Wallis test multiple comparison test. Error bars represent mean ± SD.

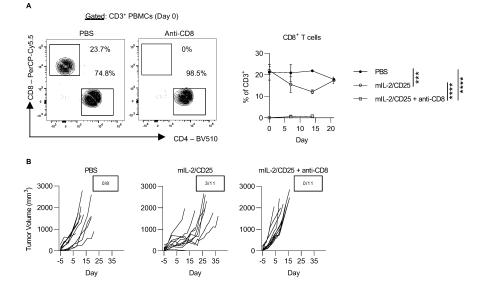


Fig. S4. CD8⁺ T cell depletion inhibits the mIL-2/CD25-induced antitumor response. CT26-bearing BALB/c mice were depleted of T cells and treated as described in Fig. 1. PBMCs were collected before, during, and after treatment in order to verify depletion by flow cytometry. (A) Data shows representative flow plots of CD4⁺ and CD8⁺ T cells after gating on CD3⁺ T cells in the PBMCs collected on D0. The frequency of CD8⁺ T cells of the CD3⁺ T cell population is quantified in the blood over time. Data (n=8/11/group) were analyzed via one-way ANOVA with Tukey's multiple comparison test of the AUC. Error bars represent mean \pm SD. (B) Tumor curves are shown for the depletion experiments.

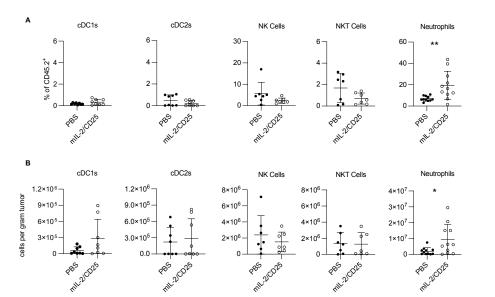
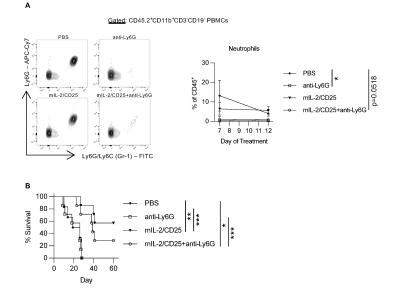



Fig. S5. The antitumor effects of mIL-2/CD25 do not act significantly through the non-T cell compartment. (A-B) The CT26 TME was analyzed as described in Fig. 3. Frequencies (A) out of the total tumor-associated immune population (CD45.2+) and cell numbers per gram tumor (B) are shown. Type 1 conventional dendritic cells (cDC1s) were defined as live CD45.2+CD11b-CD11c+MHC CII+CD8+CD4- cells. Type 2 conventional dendritic cells (cDC2s) were defined as live CD45.2*CD11b*CD11c*MHC CII*CD8*CD4+ cells. NK cells were defined as live CD45.2*CD3*CD11b*Ly6G- $CD49b^{\scriptscriptstyle +} \text{ cells. NKT cells were defined as live } CD45.2^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +}CD11b^{\scriptscriptstyle +}Ly66^{\scriptscriptstyle +}CD49b^{\scriptscriptstyle +} \text{ cells. Neutrophils are defined as live } CD45.2^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +}CD11b^{\scriptscriptstyle +}Ly66^{\scriptscriptstyle +}CD49b^{\scriptscriptstyle +} \text{ cells. NKT cells } \text{ were defined as live } CD45.2^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +}CD11b^{\scriptscriptstyle +}Ly66^{\scriptscriptstyle +}CD49b^{\scriptscriptstyle +} \text{ cells. } \text{ Neutrophils are defined as live } CD45.2^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +}CD11b^{\scriptscriptstyle +}Ly66^{\scriptscriptstyle +}CD49b^{\scriptscriptstyle +} \text{ cells. } \text{ Neutrophils are defined } \text{ as live } CD45.2^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +}CD11b^{\scriptscriptstyle +}Ly66^{\scriptscriptstyle +}CD49b^{\scriptscriptstyle +} \text{ cells. } \text{ Neutrophils } \text{ are defined } \text{ as live } CD45.2^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +}CD11b^{\scriptscriptstyle +}Ly66^{\scriptscriptstyle +}CD49b^{\scriptscriptstyle +} \text{ cells. } \text{ Neutrophils } \text{ are defined } \text{ as live } CD45.2^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +} \text{ cells. } \text{ Neutrophils } \text{ are defined } \text{ as live } CD45.2^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +} \text{ cells. } \text{ Neutrophils } \text{ are defined } \text{ as live } CD45.2^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +} \text{ cells. } \text{ neutrophils } \text{ are defined } \text{ as live } CD45.2^{\scriptscriptstyle +}CD3^{\scriptscriptstyle +} \text{ cells. } \text{ neutrophils } \text{ neutrophils } \text{ neutrophils } \text{ cells. } \text{ neutrophils } \text{ neutrophils$ CD11b+Ly6G+CD49b cells. Data (n=7-11/group) were pooled from 3 experiments and analyzed by Mann-Whitney test. Error bars represent mean ± SD.

mili2loc

mil-2CE

Fig. S6. Verification of Neutrophil depletion during therapy. CT26-bearing animals were depleted of Neutrophils via anti-Ly6G clone 1A8 throughout therapy. (**A**) Representative flow plots show both Ly6G and Gr-1 staining of PBMCs collected on D7 and the frequency of Neutrophils (Ly6G⁻CD11b⁻CD3⁻CD19⁻) of the CD45.2⁻ immune compartment is shown for D7 and D12 PBMCs. (**B**) Mouse survival is shown. Data (n=6-7/group) were pooled from 2 independent experiments. Blood data (n=5-7/group) was analyzed as a one-way ANOVA with Tukey's multiple comparison test of the AUC. Survival data were analyzed via a Log Rank test. Error bars represent mean ± SD.

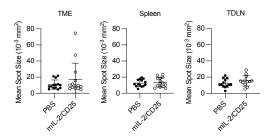


Fig. S7. HD mIL-2/CD25 does not increase the levels of IFNy made on a per CD8+ T cellular basis. Mean spot size is shown for the IFNy ELISpot experiments from Fig. 5. ELISpot data (n=12-14/group) were pooled from 5 independent experiments and analyzed by Mann-Whitney test. Error bars represent mean \pm SD.

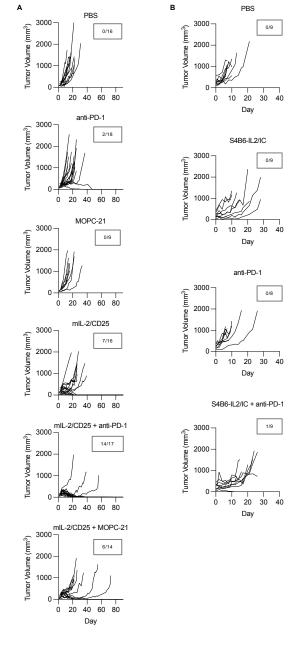


Fig. S8. HD mIL-2/CD25 combined with PD-1 blockade supports higher inhibition of tumor progression. (A) Tumor growth is shown for the mIL-2/CD25 and anti-PD-1 experiments in Fig 7A. (B) Tumor growth is shown for the S4B6-IL2/IC and anti-PD-1 experiment in Fig 7C.

Supplementary Table 1. List of fluorochrome-labeled, biotin-labeled monoclonal antibodies, and

fluorochrome-streptavidin conjugates used for flow cytometry in this study, along with source and staining concentration.

Antigen	Clone	Fluorophore	Concentration	Company	Cat. No.
CD45.2	104	APC	1:100	BioLegend	109814
CD45.2	104	APC-Cy7	1:100	Invitrogen	10-0454-81
CD45.2	104	Biotin	1:100	BD Biosciences	558702
CD3	17A2	AlexaFluor700	1:100	Invitrogen	56-0032-82
CD3	17A2	BV750	1:100	BioLegend	100249
CD3	145-2C11	FITC	1:150	Invitrogen	11-0031-82
CD4	RM4-5	BV510	1:100	BioLegend	100553
CD8α	53-6.7	Alexa Fluor 700	1:100	Invitrogen	56-0081-82
CD8a	53-6.7	BV605	1:100	BioLegend	100744
CD8a	53-6.7	BV650	1:100	BioLegend	100742
CD8α	KT15	FITC	1:100	Invitrogen	MA5-16759
CD8α	53-6.7	PerCP-Cy5.5	1:100	BioLegend	100734
CD44	IM7	Pacific Blue	1:50	BioLegend	103020
CD44	IM7	PE	1:300	Invitrogen	12-0441-83
CD44	IM7	Alexa Fluor 700	1:100	BioLegend	103026
CD44	IM7	APC-Cy7	1:100	BioLegend	103028
CD25	PC61	BV605	1:100	BioLegend	103036
CD25	3C7	PE	1:100	BioLegend	101904

1

CD25	PC61	PE-Cy7	1:100	BioLegend	102016
CD25	PC61	PE-Texas Red	1:100	BioLegend	102048
CD11b	M1/70	FITC	1:100	Invitrogen	11-0112-41
CD11b	M1/70	BV650	1:100	BioLegend	101259
CD11c	N418	BV605	1:100	BioLegend	117333
CD19	ID3	BV711	1:200	BD Biosciences	563157
CD19	6D5	PE/Dazzle 594	1:200	BioLegend	115554
CD49b	DX5	PE-Cy7	1:50	BioLegend	108922
Ly6C	AL-21	Biotin	1:500	BD Biosciences	557359
Ly6G	1A8	APC-Cy7	1:100	BioLegend	127624
Gr-1	RB6-8C5	FITC	1:100	BioLegend	108406
MHC CII (I-A/I- E)	M5/114.15.2	PerCP-Cy5.5	1:200	BioLegend	107626
NK1.1	PK136	PE	1:100	BioLegend	108708
PD-1 (CD279)	J43	BV421	1:50	BD Biosciences	565942
PD-1 (CD279)	RMP1-14	PE	1:100	BioLegend	114118
PD-1 (CD279)	RMP1-30	Biotin	1:100	BioLegend	109106
LAG-3 (CD223)	C9B7W	PerCP-Cy5.5	1:40	BD Biosciences	564673
Streptavidin	N/A	BV605	1:100	BioLegend	405229
Streptavidin	N/A	PE-CF594	1:100	BD Biosciences	562284
Streptavidin	N/A	PE-Cy7	1:100	Invitrogen	25-4317-82
Streptavidin	N/A	PE-Cy7	1:100	Invitrogen	25-4317-82

Foxp3	FJK-16s	eFluor 450	1:200	Invitrogen	48-5773-82
Foxp3	FJK-16s	PerCP-Cy5.5	1:100	Invitrogen	45-5773-82
Foxp3	FJK-16s	PE-Cy7	1:100	Invitrogen	25-5773-82
Foxp3	FJK-16s	Alexa Fluor 488	1:100	Invitrogen	53-5773-82
Ki67	B56	Alexa Fluor 700	1:50	BD Biosciences	561277
тох	TXRX10	eFluor 660	1:40	Invitrogen	50-6502-82
TCF1	S33-966	PE	1:50	BD Biosciences	564217
Granzyme B	GB11	Alexa Fluor 647	1:50	BD Biosciences	560212
ΤΝFα	MP6-XT22	PerCP-Cy5.5	1:100	BioLegend	506322
IL-2	JES6-5H4	PE-Cy7	1:20	Invitrogen	25-7021-82
IL-2	JES6-5H4	PE	1:100	BioLegend	503808
IFNγ	XMG1.2	PE/Dazzle 594	1:100	BioLegend	505846
Fixable Viability Dye	N/A	eFluor 455UV	1:100	Invitrogen	65-0868-18
Fixable Viability Stain	N/A	440UV	1:100	BD Biosciences	566332
AH1 Tet	N/A	APC	1:150	N/A	N/A
AH1 Tet	N/A	BV421	1:150	N/A	N/A
Neg control Tet	N/A	PE	1:150	N/A	N/A