Article Text
Abstract
Background Targeting the DNA damage repair (DDR) pathways is an attractive strategy for boosting cancer immunotherapy. Ceralasertib (AZD6738) is an oral kinase inhibitor of ataxia telangiectasia and Rad3 related protein, which is a master regulator of DDR. We conducted a phase II trial of ceralasertib plus durvalumab in patients with previously treated advanced gastric cancer (AGC) to demonstrate the safety, tolerability, and clinical activity of the combination.
Methods This phase II, open-label, single-center, non-randomized study was designed to evaluate the efficacy and safety of ceralasertib in combination with durvalumab in patients with AGC. The study drug regimen was ceralasertib (240 mg two times a day) days 15–28 in a 28-day cycle in combination with durvalumab (1500 mg) at day 1 every 4 weeks. The primary end point was overall response rate (ORR) by Response Evaluation Criteria in Solid Tumors (V.1.1). Exploratory biomarker analysis was performed using fresh tumor biopsies in all enrolled patients.
Results Among 31 patients, the ORR, disease control rate, median progression-free survival (PFS), and overall survival were 22.6% (95% CI 9.6% to 41.1%), 58.1% (95% CI 39.1% to 75.5%), 3.0 (95% CI 2.1 to 3.9) months, and 6.7 (95% CI 3.8 to 9.6) months, respectively. Common adverse events were manageable with dose modification. A subgroup of patients with a loss of ataxia telangiectasia mutated (ATM) expression and/or high proportion of mutational signature attributable to homologous repair deficiency (sig. HRD) demonstrated a significantly longer PFS than those with intact ATM and low sig. HRD (5.60 vs 1.65 months; HR 0.13, 95% CI 0.045 to 0.39; long-rank p<0.001). During the study treatment, upregulation of the innate immune response by cytosolic DNA, activation of intratumoral lymphocytes, and expansion of circulating tumor-reactive CD8 +T cell clones were identified in responders. Enrichment of the tumor vasculature signature was associated with treatment resistance.
Conclusions Ceralasertib plus durvalumab has promising antitumor activity, with durable responses in patients with refractory AGC. Thus, a biomarker-driven trial is required.
Trial registration NCT03780608.
- gastrointestinal neoplasms
- genome instability
- clinical trials, phase II as topic
- programmed cell death 1 receptor
Data availability statement
Data are available on reasonable request. All raw sequencing data were deposited in the European Nucleotide Archive (ENA) (accession number: PRJEB43396).
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.
Statistics from Altmetric.com
- gastrointestinal neoplasms
- genome instability
- clinical trials, phase II as topic
- programmed cell death 1 receptor
What is already known on this topic
Alterations in DNA damage repair (DDR) pathway of tumors are highly associated with the response of immune checkpoint inhibitors (ICI). Moreover, combination strategy of targeting DDR pathways with ICIs can be a promising approach to improve efficacies of ICIs.
What this study adds
Ceralasertib plus durvalumab displays a promising efficacy and manageable toxicity in patients with refractory advanced gastric cancer. Loss of ataxia telangiectasia mutated expression and/or high proportion of mutational signature related to homologous repair deficiency in tumor was related to favorable progression-free survival. Activations of innate and adaptive immune responses were identified in responders during treatment.
How this study might affect research, practice or policy
Further biomarker driven trial is warranted for ceralasertib plus durvalumab.
Background
Systemic treatment options for advanced gastric cancer (AGC) have evolved rapidly in recent years. Central among these is the recent approval of immune checkpoint inhibitors (ICIs) as treatment for chemorefractory AGC, which has provided insight on immunotherapy for AGC.1 The treatment paradigm for frontline treatment for AGC has changed following approval of anti-programmed cell death 1 (PD-1) agents in combination with conventional chemotherapy.2–4 The clinical benefit of ICIs was established in a subset of GC patients with high microsatellite instability, Epstein-Barr virus positivity, or high programmed death ligand 1 (PD-L1) expression.5 However, approximately 85% of patients experience primary resistance and minimal ICI benefit. Furthermore, patients who respond to ICIs often develop acquired resistance.6 However, limited treatment options exist once resistance develops, highlighting the need for further novel therapies or strategies that can increase the proportion of patients, including salvage patients with ICI resistance that can benefit from ICIs.
The recent approval of ICIs for tumors with defective mismatch repair has made it possible to investigate the role of DNA damage repair (DDR) defects in sensitizing cancer to ICI therapy.7 Alterations in DDR genes confer genomic instability in cancer cells, resulting in increased somatic mutations and neoantigen load.8 By promoting PD-L1 expression and tumor-infiltrating lymphocyte infiltration, genomic instability may enhance tumor immunogenicity and tumor microenvironment (TME),9 which are potential determinants of response to ICI treatment. Therefore, combination treatment of ICIs and DNA-damaging therapeutics could theoretically alleviate resistance and enhance efficacy of ICI treatment, as recently reported.10
Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein kinase (ATR) are essential components of DDR in human cells.11 Ceralasertib (formerly AZD6738) is a potent, selective oral ATR inhibitor that suppresses the replication stress response induced by DNA damage in the S-phase of the cell cycle in tumor cells. Several studies demonstrated a promising antitumor activity of ceralasertib in combination with chemotherapy for treating refractory metastatic cancer.12 13 In addition, melanoma and non-small cell lung cancer patients who were previously treated with anti-PD1 agents showed favorable responses in a currently ongoing phase II clinical trial.14 15
Here, we report the first phase II trial of ceralasertib plus durvalumab (ceralasertib +durvalumab), an anti-PD-L1 antibody, for AGC treatment. We demonstrated the safety, tolerability, and clinical activity of this combination in patients with chemorefractory AGC. Focusing on a subset of patients with adequate tissue specimens for sequencing, we attempted to identify potential biomarkers for the therapeutic efficacy of the combination treatment.
Methods
Study design and participants
This was a phase II, open-label, single-center, non-randomized study conducted at the Samsung Medical Center (Seoul, Korea). The eligibility criteria were as follows: (1) histologically confirmed diagnosis of gastric or gastroesophageal junctional adenocarcinoma; (2) prior failure of at least one line of chemotherapy that included platinum/fluoropyrimidine; (3) at least 19 years of age; (4) at least one measurable lesion according to the Response Evaluation Criteria in Solid Tumors (RECIST) V.1.1; (5) adequate organ function per protocol; and (6) Eastern Cooperative Oncology Group performance status 0 or 1. Patients with prior anti-PD-1 or anti-PD-L1 treatments were not excluded.
All patients received 1500 mg of intravenous durvalumab (MEDI-4736) infused over 60 min on day 1, followed by 240 mg of ceralasertib twice daily on days 15–28, until disease progression, unacceptable toxicity, or withdrawal of consent. The treatment cycle lasted for 4 weeks (online supplemental figure S1A). Dose reductions of durvalumab were not allowed but ceralasertib was dose-reduced to 160 mg two times per day and subsequently to 160 once daily for treatment-emergent AEs. Response was assessed every 2 months according to RECIST V.1.1. Adverse events (AEs) were summarized using the preferred terms, and graded according to the National Cancer Institute Common Terminology Criteria for AEs 5.0.
Supplemental material
Supplemental material
The primary endpoint was the objective response rate (ORR), according to RECIST V.1.1. The secondary endpoints included disease control rate (DCR), progression-free survival (PFS), overall survival (OS), safety, and exploratory biomarkers.
Tumor sample and peripheral blood collection
To explore potential biomarkers, primary gastric tumor tissues were obtained via endoscopic biopsy at any time from 1 to 28 days before commencing the study treatment. Matched peripheral blood (PB) samples were collected prior to treatment initiation. After two cycles of study treatment, blood and tissue samples were collected if available. If tumor cellularity was estimated to be >40% after a thorough pathological review, tumor DNA and RNA were extracted from freshly obtained tumor tissues using a QIAamp Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. RNaseA (cat. #19101; Qiagen) was used for RNase digestion during the DNA preparation. We measured the concentrations and 260/280 and 260/230 nm absorption ratios using a NanoDrop 1000 Spectrophotometer (NanoDrop Technologies LLC, Thermo Fisher Scientific, Massachusetts, USA), while DNA/RNA was quantified using a Qubit Fluorometer (Life Technologies, California, USA).
Immunohistochemistry for ATM and PD-L1
Immunohistochemistry (IHC) was performed using an automatic immunostainer (Dako, Glostrup, Denmark) according to the manufacturer’s instructions. To assess ATM protein expression by IHC, a primary anti-ATM antibody was used (Y170; Abcam Plc., Cambridge, UK). Regardless of the cytoplasmic staining status, cancer cells showing nuclear staining were considered positive for ATM. Loss of ATM protein expression was defined as nuclear expression in ≤20% of the stained cells as previously reported.16 For PD-L1 IHC, we used Dako PD-L1 IHC 22C3 pharmDx kit (Agilent Technologies, California, USA) with the EnVision FLEX visualization system (Agilent Technologies) and counterstained with hematoxylin according to the manufacturer’s instructions. PD-L1 protein expression was assessed using the Combined Positive Score (CPS), which refers to the percentage of PD-L1-stained cells (tumor cells, lymphocytes, and macrophages) among viable tumor cells. Specimen was considered PD-L1-positive when CPS was ≥1.
Whole-exome sequencing, whole-transcriptome sequencing, single-cell RNA-seq, and data processing
The detailed process of library preparation and data analysis in whole-exome sequencing (WES), whole-transcriptome sequencing (WTS), and single-cell RNA sequencing are described in online supplemental methods.
Sample size and statistical analysis
The planned sample size was calculated according to Simon’s two-stage minimax design, assuming 90% power, hypothesis rejected at RR <15%, a one-sided alpha level of 5%, assuming expected ORR of 40%, and 10% non-response rate. The total number of patients available for evaluation was 27 and 30 patients were recruited to reflect a 10% drop-off rate. In the first stage, if there were fewer than two responses from the initial 16 patients, the study was stopped. Statistical associations between continuous variables were evaluated using Spearman’s correlations, and those between continuous and categorical variables were evaluated using rank-sum statistics. The non-parametric Mann-Whitney U-test was used to compare between two groups with non-normally distributed data. Paired values were compared using non-parametric Wilcoxon matched-pair signed-rank test. Survival analyses were performed using the Kaplan-Meier method, and differences were analyzed using the log-rank test. HRs and corresponding 95% CIs were calculated using the Cox proportional hazards model. PFS was defined as the time from treatment initiation to date of disease progression or death from any cause. OS was defined from treatment initiation to date of death from any cause. Among patients receiving at least one dose of ceralasertib and durvalumab, ORR was defined as the proportion of patients who experienced complete response (CR) or partial response (PR) and DCR (defined as the proportion of patients presenting with CR, PR, or stable disease (SD)). All statistical analyses were performed using R V.3.6.0 (http://www.r-project.org) or Prism (V.8.4; GraphPad, Waltham, Massachusetts, USA). The data cut-off date was December 11, 2020.
Results
Anti-tumor activity of the study treatment
This study enrolled 31 patients with AGC between August 2019 and March 2020. Baseline demographic and disease characteristics are shown in table 1. At data cut-off date, RECIST response evaluations were available for 30 patients, with a median follow-up of 14.1 (range 8.8–16.7) months. One patient (ID16) who developed ischemic stroke after one study treatment cycle progressed and died before response evaluation. Seven patients (22.6%) achieved PR (3 (42.9%) and maintained the response for >6 months (median duration, 5.7 (95% CI, 4.9 to 6.5) months; (figure 1B)); 11 (35.5%) achieved SD with ORR of 22.6% (95% CI 9.6 to 41.1) and DCR of 58.1% (95% CI 39.1% to 75.5%) (figure 1A, online supplemental table S1). Notably, two patients (ID01, SD in prior nivolumab; ID05, PR in prior pembrolizumab +XELOX) who progressed on prior-anti-PD1 treatment demonstrated PR (ID01) or SD (ID05) (figure 1B). Twenty-four patients (77.4%) had PDL1-expressing tumors (table 1) of which 6 (25%) had a PR while one of five patients with a PDL1-negative tumor had a RECIST PR (20%) (online supplemental table S2). Tumors with loss of ATM expression were enriched in patients with the best response (SD or PR) (figure 1B). Specifically, half of the patients with ATM loss responded to treatment; 14.3% with intact ATM had a PR (online supplemental table S2). At data cut-off date, 30 PFS events (median, 3.0 (95% CI 2.1 to 3.9 months)) occurred (figure 1C), and 26 patients died (median OS, 6.7 (95% CI 3.8 to 9.6) months) (figure 1D).
Supplemental material
Safety profile
Among 31 patients who received ≥1 dose of both ceralasertib and durvalumab, treatment-emergent AEs of any grade occurred in 30 (96.8%) patients; the most common AEs were fatigue, nausea, anorexia, anemia, thrombocytopenia, and vomiting (table 2). Twenty-three (74%) patients reported grades 3 or 4 treatment-emergent AEs, mostly of hematologic origin (anemia (n=11, 35.5%), thrombocytopenia (n=11, 35.5%), and neutropenia (n=2, 6.7%)), which are expected toxicities of ceralasertib. All grade ≥3 AEs improved following drug administration interruptions and supportive care, including intermittent transfusions. No treatment-related deaths occurred during this period. Ceralasertib dose reduction following treatment-emergent AEs occurred in 15 (48.4%) patients (240 mg two times per day to 160 mg two times per day (9 patients) or to 160 mg every day (6 patients) for 14 days, respectively) commonly due to thrombocytopenia (grade ≥3) and neutropenia (grade ≥3). None of the patients discontinued durvalumab or ceralasertib owing to AEs.
Responders genomic characterization
To explore the molecular characteristics of AGC in response to ceralasertib plus durvalumab, we investigated whole-exome sequences of pretreatment biopsy specimens. Overall, 24 tumors with matched blood samples were available for WES (online supplemental figure S1B). We analyzed WES sequences in a unified pipeline (mean sequencing coverages of ~200 x for tumor and matched blood samples) and mapped out the mutational landscape between responders and non-responders, focusing on consensus cancer driver genes17 and DDR pathway18 (figure 2A). Samples displayed a variable tumor mutational burden (TMB; median, 2.90 (range, 0.53–12.62)) mutations per megabase (figure 2A, upper). TMB tended to be higher in responders than in those without a RECIST response, whereas tumors from patients with PD had a significantly lower TMB than those with PR (p=0.018, Mann-Whitney-U test; figure 2B). Notably, mutations of genes involved in DDR were significantly enriched in partial responders (p=0.022, Mann-Whitney-U test; figure 2A).
Loss of ATM expression was exclusively found in patients with PR or SD, in addition to one patient with mismatch repair-deficient tumors (ID26) (figures 1B and 2A). Furthermore, patients with ATM loss and/or mutations attributable to homologous recombination deficiency tended to benefit from study treatment (10/11 with HR deficiency had best responses of PR or SD vs 3/13 with HR proficiency) (figure 2A,C), while those with HR deficiency had significantly superior PFS (HR 0.13, 95% CI 0.045 to 0.39, p=0.0002; figure 2D). Multivariate analysis identified ATM loss and/or high signature attributable to homologous repair deficiency (sig. HRD) as the single most significant factor predicting favorable PFS in AGC patients treated with ceralasertib plus durvalumab (figure 2e). Patient ID24, a male patient (66 years old) with AGC and loss of ATM expression had a high sig.HRD and frequent copy number alterations (online supplemental figure S2A). This patient progressed on frontline treatment with 5-fluorouracil and oxaliplatin. After two cycles of ceralasertib plus durvalumab, metastatic liver lesions markedly decreased, and the patient remained on treatment for >12 months. In contrast, patient ID02 (56 years old, male) with HR-proficient disease, rapidly progressed after two cycles of study treatment (online supplemental figure S2B). The tumor of patient ID02 had intact ATM expression and low sig.HRD and was genomically stable.
Evolving TME during treatment with ceralasertib+durvalumab
We performed pretreatment WES and WTS and collected on-treatment biopsy samples to examine the effect of ceralasertib plus durvalumab on AGC and its TME. While TMB per se did not change significantly during the study treatment, responders had an increased proportion of neoantigens in the on-treatment samples (p=0.024, figure 3A). Gene set variation analysis identified significant upregulation of innate immune responses to cytosolic DNA and enriched signatures related to T and B lymphocyte activation during the study treatment in responders compared with those in non-responders (figure 3B, online supplemental figure S3A). By deconvoluting the expression profiles of WTS data, we estimated TME cellular proportions, revealing increased cytotoxic T lymphocytes in responders on study treatment (p=0.142, online supplemental figure S3B). Collectively, these results revealed the remodeling of TME, favoring T cell activation in patients who responded to ceralasertib plus durvalumab.
Increased tumor-reactive CD8+ T cell clones in PB during treatment with ceralasertib plus durvalumab
To investigate the immunologic phenotype associated with ceralasertib plus durvalumab response, we performed single-cell RNA sequencing and T-cell receptor (TCR) sequencing of PB samples from eight selected patients (figure 4A, online supplemental figure S4). After unsupervised clustering, we annotated each cell cluster according to canonical immune cell markers and identified four major immune cell types and various immune cell subtypes (T cells (n=11 460); NK cells (n=8161); myeloid cells (n=10 744); B cells (n=1143); and platelets (n=301)) (online supplemental figures S4–S6).19 We noted distinct immune cell composition in pretreatment blood samples between responders and progressors (ie, those with a best PD response) (figure 4B, online supplemental figure S4B–D). Specifically, progressors had a higher CD4+, CD8+, and γδT cells in pretreatment PB samples, while NK cells were enriched in responders. During the study, we observed increased T cell proportions in both responders and progressors (figure 4C). However, TCR clonality demonstrated variable changes during treatment in responders, while progressors had decreased TCR clonality in on-treatment samples compared with that in pretreatment samples (figure 4D). To analyze the dynamic changes in PB CD8+ T cells that are crucial for cytotoxicity against cancer cells during the study treatment, we compared TCR clonal frequencies of PB CD8+ T cells between pretreatment and on-treatment. We also annotated each clone as persistent, expanded, contracted, and novel T cell clone (figure 4E).20 Interestingly, patients with PR had significantly higher frequencies of novel or expanded PB CD8+ T cell clones during study treatment than did patients with PD (p=0.002, figure 4F). We found that the novel or expanded PB CD8+ T cell clones from the patients with PR expressed high levels of PD-1 (PDCD1), TIGIT, CTLA-4 (CTLA4), TOX, CD103 (ITGAE), and CD69, implying tumor-reactive T cells circulating in PB during study treatment (figure 4G).21 To delineate whether novel or expanded PB CD8+ T cell clones from patients with PR were relevant to tumor-reactive T cells, we estimated the binding affinity between TCR of the novel or expanded PB CD8+ T cells and major histocompatibility complex (MHC)-neoantigen peptide that newly occurred on-treatment in each patient. The estimated binding affinity score was significantly higher in patients with PR than in those with PD (figure 4H). Altogether, these data suggest that circulating tumor-reactive CD8+ T cell clones increased in response to ceralasertib plus durvalumab.
Enriched tumor vasculature and treatment resistance with ceralasertib+durvalumab
To explore the molecular characteristics of the TME, including resistance, we analyzed the pre-treatment WTS data of non-responders and responders. Overall, 193 differentially expressed genes were identified between non-responders and responders. In gene-set enrichment analysis, several canonical pathways involved in angiogenesis were commonly enriched in non-responders, including hepatocyte growth factor (p=0.001), vascular endothelial-derived growth factor (p=0.007), interleukin 6 (p=0.003), and platelet-derived growth factor (p<0.001) (figure 5A). Moreover, genes involved in DDR, metastasis, angiogenesis, wound healing, and hypoxia were significantly upregulated in progressors (figure 5B). As with gene set enrichment analysis, deconvoluting WTS data also revealed higher abundance of endothelial cells in progressors (figure 5C). In brief, enriched angiogenesis signature in TME was associated with resistance to the study treatments.
Considering how the TME is related to more comprehensive ICI responses, we classified each pretreatment sample into four distinct microenvironment subtypes (immune-depleted, fibrotic, immune-enriched, and immune-enriched/fibrotic) to predict immunotherapy response (figure 5D).22 Overall, this subtyping did not predict study treatment response. All patients with immune-enriched/fibrotic subtype showing enriched angiogenesis signature did not demonstrate response to ceralasertib plus durvalumab, while patient ID03 with fibrotic subtype who showed a low angiogenesis and high T cell traffic signature demonstrated PR to ceralasertib plus durvalumab (figure 5D,E). In addition, among the 29 genes that determine the four distinct microenvironment subtypes, a lower level of T cell trafficking was identified in progressors than in responders (figure 5F). In brief, an enriched tumor vascular signature in TME before the study treatment was associated with a poor response to ceralasertib plus durvalumab.
Discussion
Recently, various combination strategies with anti-PD-(L)1 have been investigated for metastatic GC, especially with the US Food and Drug Administration approval of chemotherapy plus nivolumab as first-line treatment. Treatment options need to be optimized for different subsets of patients with GC, preferably based on tumor characteristics. In this phase II trial, we investigated the combination of durvalumab and ceralasertib in refractory AGC patients, predominantly those with microsatellite stability (MSS). Ceralasertib plus durvalumab resulted in an ORR of 22.6% (7/31). Compared with previous response rates (0%–12%) in phase III trials of anti-PD(L)−1 monotherapy in different settings,2 23–25 the ORR achieved with this novel combination is promising.
Considering that chemotherapy plus IO is recommended as a first-line therapy for AGC, treatment options for patients with acquired resistance to IO therapy are needed. In this study, two patients with prior anti-PD-1 treatment had progressive disease before commencing this study treatment and did not receive intervening chemotherapy following anti-PD1 therapy. A patient (ID01) who received nivolumab and demonstrated SD as the best response had a PR to ceralasertib plus durvalumab. Patient ID05 received pembrolizumab +XELOX, demonstrated PR, and had SD as best study treatment response. Considering that ceralasertib plus durvalumab was active (ORR 31.0%) in metastatic melanoma after failure of prior anti-PD-1 therapy,15 ceralasertib plus durvalumab could be a promising strategy for AGC patients who fail prior IO or chemotherapy plus IO and is suitable as a salvage therapy.
Approximately 10%–20% of GC patients have pathogenic alterations in DDR family genes or complete ATM loss.26 27 In the prespecified biomarker analyses, ATM loss by IHC was associated with response to ceralasertib plus durvalumab (4 PR among 8 patients with ATM loss) in this trial. One possibility is to include ATM IHC to select patients with ATM protein loss in a larger prospective trial to validate our observation.
DDR signaling and repair is a complex, multi-step process involving multiple proteins including ch as breast cancer gene 1 (BRCA1), breast cancer gene 2 (BRCA2), ATM, ATR, RAD51 recombinase, and partner and localizer of BRCA2 (PALB2).28 Mutation of the above genes may confer HRD, and assays that combine BRCA mutation status with ‘genomic scar,’ which is a pattern of accumulated somatic alterations caused by HRD, are used as companion diagnostics for Poly-ADP ribose (PARP) inhibitors in ovarian cancer (Myriad MyChoice and FoundationOne CDx).29 30 Although ATM is a vital component in HR repair (HRR), the proficiency of HRR is determined by the status of many factors in the pathway as well as ATM.31 Given the complexity, we examined both ATM protein loss and mutational signatures as indicators of defects in HR (single base substitution 3)32 and as predictors of study treatment response. In our data, patients whose tumors had a combination of ATM protein loss and/or high sig.HRD score demonstrated significantly longer mPFS to ceralasertib plus durvalumab than those without (HR proficient group). Although mutational signatures reflect historical endogenous (DNA damage, repair and replication) and exogenous mutational processes,32 and correlate with clinical features such as survival and platinum-based chemotherapy response,33–37 hitherto mutational signatures have not been widely used as a predictive biomarker for DDR targeting agents. The major hurdle is the reliance on fresh-frozen tissues while most clinical samples are formalin-fixed. Considering the feasibility of sampling, ATM IHC and/or HRD assays that use formalin fixed tissues could be a practical alternative for large-scale clinical trials.
In exploratory analysis, we counted neoantigens per tumor mutation ratio by estimating the binding affinity between neopeptide sequence in tumor samples and HLA alleles per patient. Patients who demonstrated PR as their best response in the HR-deficient group showed significantly increased neoantigen ratio and increased transcriptomic signature of an innate immune response to cytosolic DNA, the so-called cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway34 (figure 3A,B). Although limited by a small sample size, these data support the hypothesis that ATR inhibition could induce genomic instability in HR-deficient tumors and increase mutations, facilitating subsequent immune activation. The dynamic immune activation in the tumor immune microenvironment during study treatment might explain why PD-L1 expression in pre-treatment samples was not associated with clinical response.
Beyond HR deficiency, we analyzed dynamic changes in gene expression using tumor WTS and sc-RNA sequencing of PB obtained at baseline and during treatment. Along with the enriched signature of innate responses to cytosolic DNA, signatures of increased adaptive immune responses, such as B cell receptor, interleukin-2, and T cell receptor signaling, were identified in tumor tissues of patients with objective response. Furthermore, increased cytotoxic CD8+ T cells in tumor tissue and expanded tumor-reactive CD8+ T cells in PB were identified in patients with PR during study treatment. In contrast to the increase in T cell populations in the blood of all patients, novel or expanded CD8+ T cell clone frequencies were significantly higher in patients with PR than in those with SD or PD. Moreover, these novel or expanded T cells presented high levels of CD39, CD103, CD69, PD-1, TIGIT, and CTLA-4, which are markers of tissue-resident and tumor antigen-specific T cells.38 The novel or expanded T cells had TCR sequences, predicted to have high affinity for the neo-antigen peptide-MHC complex. Although our data were limited to TCR sequence data in PB, Wu et al reported that identifying clonal expansion in peripheral T cells can predict intratumoral T cell infiltration and clinical response to ICIs.39 Collectively, these data suggest that ceralasertib plus durvalumab can show anti-tumor activity by reinvigorating exhausted T cells.
As tumor vasculature is known to promote immune suppression by hindering immune cell infiltration,40 upregulated angiogenesis signatures and diminished T cell traffic features were identified in non-responders to ceralasertib plus durvalumab. Patient ID-30 who had HR-deficient tumor but showed disease progression demonstrated an enriched angiogenesis signature in the tumor before treatment (online supplemental figure S7D). Adding an anti-angiogenic agent might be an alternative strategy to overcome immune evasion in selected cases.
In conclusion, our study demonstrated that ceralasertib plus durvalumab was tolerable and led to an impressive ORR (22.6%) in a large MSS cohort of otherwise unselected metastatic GC patients with persistent or recurrent disease after previous chemotherapy. In this population, the clinical activity of single-agent PD-1 therapy is limited and the combination of ceralasertib plus durvalumab can be a potential treatment option for AGC patients, after failure of chemotherapy plus IO. The other treatment options here remain paclitaxel±ramucirumab and TAS-102, the latter of which is approved in the USA in patients who have received at least two prior lines of chemotherapy. Ceralasertib plus durvalumab is a potential future non-chemotherapy option. Our exploratory biomarker analysis suggested that AGC patients with either ATM loss and/or high HRD scores are especially likely to benefit from ceralasertib combination therapy. Biomarker enrichment strategies may be required to select patients who are most likely to benefit in future studies.
Data availability statement
Data are available on reasonable request. All raw sequencing data were deposited in the European Nucleotide Archive (ENA) (accession number: PRJEB43396).
Ethics statements
Patient consent for publication
Ethics approval
The study protocol was approved by the institutional review board (Seoul, Korea; IRB No. 2015-09-053). The study was conducted in accordance with the Good Clinical Practice Guidelines and Declaration of Helsinki. Written informed consent was obtained from all patients.
References
Supplementary materials
Supplementary Data
This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.
Footnotes
MK and GK contributed equally.
Contributors MK: conceptualization, writing-original draft, data curation, GK: Conceptualization: MK, STK, and JL. Formal analysis: MK, GK, RK, and K-TK. Methodology: MK, GK, RK, K-TK, JYH, K-MK, WKK, W-YP, and JL. Project administration; STK and JL. Writing—original draft: MK, GK, RK and JL. Acquisition of data and critical revision of the manuscript: MK, GK, RK, K-TK, STK, SS, PGSM, A-BL, II-A, LK, ED, W-YP, and JL. Supervision: JL. JL is responsible for the overall content as guarantor All authors read and approved the final manuscript.
Funding This paper was supported by SKKU Excellence in Research Award Research Fund, Sungkyungkwan University, 2020.
Competing interests ED, SS, PGSM, A-BL, II-A, and LK are employees and stockholders of AstraZeneca. JL has served a consultant/advisory role in Mirati, Seattle Genetics, and Oncologie. W-YP has equity for Geninus. The other authors declare that they have no conflicts of interest.
Provenance and peer review Not commissioned; externally peer reviewed.
Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.