Article Text
Abstract
Background Spatial transcriptomics (ST) has greatly advanced gene biomarker discovery1 and understanding of intra-tumoral heterogeneity.2 Deep learning methods applied to H&E images have improved clinical trials,3 inspiring the term H&E 2.0.4 Our work aims to enhance this by applying deep learning to H&E images in ST, reducing costs and enabling retrospective analysis on public H&E datasets without ST labels. Convolutional Neural Network (CNN) based methods like ST-Net5 have shown promise in breast cancer studies. We aim to address two aspects not covered by ST-Net: applicability to other tumors and model generalizability. We have retrained ST-Net on an in-house H&E imaging dataset from a Hepatocellular carcinoma (HCC) patient and tested its gene expression prediction capability on a public dataset, TCGA-LIHC.
Methods A single HCC sample was profiled using the 10x Visium technique. Image patches of 296x296 pixels were produced from the H&E image, each encompassing a Visium spot (figure 1). The ST-Net5 was trained using the image patches and Visium readouts of the top 250 most prevalent genes in this sample. A randomly selected 20% patches were held-out for validation purposes. The genes CD74 and ALB were selected for further investigation due to their status as HCC biomarkers.6 7 The ST-Net model, trained on HCC data, was validated using the public TCGA liver cancer cohort, specifically focusing on the two samples exhibiting the highest and lowest expression of ALB. To manage computational difficulties, we randomly selected 10% of all the image tiles for model prediction.
Results In the 20% held-out regions, the model attained an average Spearman’s correlation of 0.34 across the 250 target genes, with correlations of 0.53 for ALB and 0.34 for CD74 (figure 2A). The gene expression map generated by the model was in agreement with the Visium measurements for both ALB and CD74 (figure 2B). Evaluation on TCGA liver cancer cohort shows promising results. A relatively higher%regions were predicted to have increased ALB expression in samples exhibiting the highest bulk RNAseq values as compared to those exhibiting the lowest bulk RNAseq values, 1.34% and 0.323% vs. 0.234% and 0.0187%, respectively (figure 3).
Conclusions We present an extended application of existing ST prediction mode, ST-Net, in HCC and in public TCGA dataset. Future efforts to improve the model’s performance and generalizability could encompass implementing H&E color normalization and enhancing model explainability, such as through Gradient-weighted Class Activation Mapping (Grad-CAM).
Acknowledgements This work was supported by the Bioinformatics Institute, Singapore Immunology Network, and Insitute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR)
References
Zhang L, Chen D, Song D, Liu X, Zhang Y, Xu X, Wang X. Clinical and translational values of spatial transcriptomics. Signal Transduct Target Ther. 2022;7(1):1–17. doi: 10.1038/s41392–022-00960-w.
Li Q, Zhang X, Ke R. Spatial transcriptomics for tumor heterogeneity analysis. Front Genet. 2022;13:906158. doi: 10.3389/fgene.2022.906158.
Qaiser T, Lee CY, Vandenberghe M, Yeh J, Gavrielides MA, Hipp J, Scott M, Reischl J. Usability of deep learning and H&E images predict disease outcome-emerging tool to optimize clinical trials. NPJ Precis Oncol. 2022;6(1):1–12. doi: 10.1038/s41698–022-00275–7.
Comiter C, Vaishnav ED, Ciampricotti M, Li B, Yang Y, Rodig SJ, Turner M, Pfaff KL, Jané-Valbuena J, Slyper M, Waldman J, Vigneau S, Wu J, Blosser TR, Segerstolpe Å, Abravanel D, Wagle N, Zhuang X, Rudin CM, Regev A. Inference of single cell profiles from histology stains with the Single-Cell omics from Histology Analysis Framework (SCHAF). bioRxiv. 2023 Mar 21;2023.03.21.533680. doi: 10.1101/2023.03.21.533680.
He B, Bergenstråhle L, Stenbeck L, Abid A, Andersson A, Borg Å, Maaskola J, Lundeberg J, Zou J. Integrating spatial gene expression and breast tumor morphology via deep learning. Nat Biomed Eng. 2020;4(8):827–834. doi: 10.1038/s41551–020-0578-x.
Fu X, Yang Y, Zhang D. Molecular mechanism of albumin in suppressing invasion and metastasis of hepatocellular carcinoma. Liver Int. 2022;42(3):696–709. doi: 10.1111/liv.15115.
Xiao N, Li K, Zhu X, Xu B, Liu X, Lei M, Sun HC. CD74+ macrophages are associated with favorable prognosis and immune contexture in hepatocellular carcinoma. Cancer Immunol Immunother. 2022;71(1):57–69. doi: 10.1007/s00262–021-02962-z.
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.