Article Text

Download PDFPDF

477 A novel antibody targeting human monocyte-intrinsic PD-L1 promotes immune stimulatory functions of monocytes for antitumor immunity
  1. Michelle Hsu,
  2. Xin Liu,
  3. Ying Li,
  4. Jacob Hirdler,
  5. Fabrice Lucien-Matteoni and
  6. Haidong Dong
  1. Mayo Clinic, Rochester, MN, USA
  • Journal for ImmunoTherapy of Cancer (JITC) preprint. The copyright holder for this preprint are the authors/funders, who have granted JITC permission to display the preprint. All rights reserved. No reuse allowed without permission.


Background Current PD-L1 targeting antibodies have been developed to block PD-L1’s interaction with PD-1, thereby preventing inhibition of T cell cytotoxicity. However, there has been limited clinical success in the treatment of cancers, despite high expression of PD-L1. Recent reports have demonstrated that tumor-intrinsic PD-L1 can signal intracellularly to promote cell survival independent of PD-1 ligation, potentially explaining why some cancer patients do not respond to immune checkpoint therapies. Besides tumor cells, host myeloid cells are sources of PD-L1 and can be highly immunosuppressive. Unfortunately, the intrinsic functions of PD-L1 in myeloid cells has not been well studied. We aim to dissect the intrinsic signaling of PD-L1 in monocytes, a subset of myeloid cells, and to investigate how this may be impairing antitumor immunity.

Methods Our lab has identified a new PD-L1 antibody (clone H1A), which destabilizes PD-L1 at the cell surface and induces its degradation. In our experiments, we used human PBMCs isolated from healthy donor blood and isolated monocytes from PBMCs using negative magnetic selection. To study the effects H1A-induced PD-L1 degradation on human monocytes, we assessed monocyte phenotype, function, and transcriptional profile by flow cytometry, immunoassays, and single-cell RNA sequencing, respectively. To study the indirect effects of H1A on T cell functional states, we evaluated PBMCs by flow cytometry and mass cytometry using T cell focused panels. To evaluate T cell function, we used cytotoxic killing assays.

Results H1A-treated monocytes resulted in decreased total expression of PD-L1 and a transient increase of CCL2 secretion across multiple donors. H1A treated monocytes had greater polyfunctionality based on the number of analytes secreted by single cells. H1A treated monocytes had significant transcriptional profile changes, related to transcriptional activation of CCL2. PBMCs treated with H1A resulted in more effector CD8 T cell and less regulatory T cell populations. Finally, H1A treatment of PBMCs resulted in greater T cell-mediated killing of tumor cells

Conclusions Our data suggests monocyte-intrinsic PD-L1 signaling inhibits transcriptional activation and subsequent secretion of CCL2 in human monocytes, thereby restricting effector T cells populations. H1A antibody abolishes this inhibitory mechanism and restores effector T cell responses. The significance of our studies contributes to understanding a new mechanism of action of PD-L1 in monocytes that may cause cancer patients to not respond to anti-PD-1/PD-L1 therapy. The H1A antibody provides a new tool that can overcome these limitations to enhance T-cell mediated antitumor immunity and prolong survival of patients with lethal cancers.

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.