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ABSTRACT
Background  The C-C motif chemokine receptor 5 (CCR5)/
C-C motif chemokine ligand 5 (CCL5) axis plays a major 
role in colorectal cancer (CRC). We aimed to characterize 
the molecular features associated with CCR5/CCL5 
expression in CRC and to determine whether CCR5/CCL5 
levels could impact treatment outcomes.
Methods  7604 CRCs tested with NextGen Sequencing 
on DNA and RNA were analyzed. Molecular features 
were evaluated according to CCR5 and CCL5 tumor gene 
expression quartiles. The impact on treatment outcomes 
was assessed in two cohorts, including 6341 real-world 
patients and 429 patients from the Cancer and Leukemia 
Group B (CALGB)/SWOG 80405 trial.
Results  CCR5/CCL5 expression was higher in right-sided 
versus left-sided tumors, and positively associated with 
consensus molecular subtypes 1 and 4. Higher CCR5/CCL5 
expression was associated with higher tumor mutational 
burden, deficiency in mismatch repair and programmed 
cell death ligand 1 (PD-L1) levels. Additionally, high 
CCR5/CCL5 were associated with higher immune cell 
infiltration in the tumor microenvironment (TME) of 
MMR proficient tumors. Ingenuity pathway analysis 
revealed upregulation of the programmed cell death 
protein 1 (PD-1)/PD-L1 cancer immunotherapy pathway, 
phosphatase and tensin homolog (PTEN) and peroxisome 
proliferator-activated receptors (PPAR) signaling, and 
cytotoxic T-lymphocyte antigen 4 (CTLA-4) signaling in 
cytotoxic T lymphocytes, whereas several inflammation-
related pathways were downregulated. Low CCR5/CCL5 
expression was associated with increased benefit from 
cetuximab-FOLFOX treatment in the CALGB/SWOG 80405 
trial, where significant treatment interaction was observed 
with biologic agents and chemotherapy backbone.
Conclusions  Our data show a strong association between 
CCR5/CCL5 gene expression and distinct molecular 
features, gene expression profiles, TME cell infiltration, and 
treatment benefit in CRC. Targeting the CCR5/CCL5 axis 
may have clinical applications in selected CRC subgroups 
and may play a key role in developing and deploying 
strategies to modulate the immune TME for CRC treatment.

BACKGROUND
The C-C motif chemokine ligand 5 (CCL5)/
C-C motif chemokine receptor 5 (CCR5) 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Signaling through the C-C motif chemokine ligand 
5 (CCL5) and C-C motif chemokine receptor 5 
(CCR5) can enable tumor progression and metas-
tasis through multiple mechanisms including cancer 
stem cell progression, increased angiogenesis, re-
cruitment of immunosuppressive cells, and immu-
nosuppressive polarization of macrophages within 
the tumor microenvironment (TME). Our group pre-
viously showed that single nucleotide polymor-
phisms in CCR5/CCL5 are associated with outcome 
in patients with metastatic colorectal cancer (CRC) 
treated with targeted therapies, furthermore the 
CCR5/CCL5 axis has been recently emerging as a 
novel therapeutic target in CRC in combination with 
immunotherapy strategies.

WHAT THIS STUDY ADDS
	⇒ Our study leveraged genomic and transcriptomic 
data from a comprehensive tumor profiling platform 
to examine the molecular features associated with 
CCR5 and CCL5 gene expression in CRC. We showed 
that CCR5 and CCL5 expression is associated with 
distinct molecular features, immune-related gene 
expression profiles and TME immune cell infiltration 
in CRC. Furthermore, CCR5/CCL5 expression identi-
fied distinct subsets of CRC that derive differential 
benefit from anticancer treatment.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ These novel findings support the therapeutic po-
tential of targeting the CCR5/CCL5 axis in selected 
CRC subgroups and its key role in modulating the 
immune TME, hence providing a rationale for the 
design of tailored treatment combinations for future 
clinical research.
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axis has been implicated in promoting cancer progres-
sion and metastases through multiple mechanisms 
including cancer stem cell expansion, increased auto-
crine and paracrine tumor growth, cell migration, meta-
bolic reprogramming, DNA damage repair, extracellular 
matrix remodeling, and angiogenesis.1 The CCL5/
CCR5 axis can induce vascular endothelial growth 
factor A (VEGF-A) expression and endothelial progen-
itor cell migration.2 In addition, epidermal growth 
factor receptor (EGFR) signaling blockade increases 
CCL5 expression, which promotes the recruitment of 
immunosuppressive immune and stromal cells, tumor-
associated macrophages and myeloid-derived suppressor 
cells (MDSCs), and immunosuppressive polarization 
of macrophages within the tumor microenvironment 
(TME).3 4

CCR5 and CCL5 have been reported to be overex-
pressed in colorectal cancer (CRC) primary tumors and 
distant metastases to liver and lung.5 Higher levels of 
CCL5 have been linked to poorer prognosis and aggres-
sive tumor features including poor histological differ-
entiation, deeper tumor invasion, increased number 
of involved lymph nodes, and advanced stage. In vitro, 
CCR5 enhances tumor growth and promotes metastasis, 
and its expression in CRC has been linked to shorter 
overall survival.6 We previously reported that genetic 
polymorphisms in CCL5 and CCR5 have predictive and 
prognostic value in patients with metastatic CRC (mCRC) 
receiving anti-angiogenic and anti-EGFR treatment.7–10 
In addition, CCR5 Δ32, a 32 bp loss of function deletion 
that plays a key role in modulating susceptibility to infec-
tious diseases, especially in the resistance to HIV infec-
tion, affected outcomes in patients receiving first-line 
treatment with a differential effect depending on tumor 
location.11

CCR5 blockade demonstrated the ability to effectively 
inhibit CCL5-dependent angiogenesis, downregulating 
the influence of multiple tumor promoting/suppressing 
functions among cell types that are major components 
of the TME.2 In CRC xenograft models, treatment with 
anti-CCL5 neutralizing antibodies decreased tumor 
growth, and metastatic spread to the peritoneum and 
liver. Furthermore maraviroc, a CCR5 antagonist, elicited 
antitumor effects through reprogramming MDSCs and 
promoting antitumor immunity.12 By causing antitumor 
repolarization of macrophages in the TME, maraviroc 
has been shown to effectively induce selective tumor cell 
necrosis, which has been confirmed in a phase I trial 
(NCT01736813) in patients with liver metastases from 
treatment refractory mCRC.13 Hence, treatment strate-
gies exploiting new agents targeting the CCR5/CCL5 axis 
have been under development.

In this study, we leveraged genomic and transcriptomic 
data from a comprehensive tumor profiling platform to 
examine the molecular features associated with CCR5 
and CCL5 expression in CRC. In addition, we evaluated 
whether tumor CCR5 and CCL5 gene expression was 
associated with patient outcomes and targeted treatment 

efficacy. Our results provide novel insights into the poten-
tial of the CCR5/CCL5 axis as a treatment target in CRC.

METHODS
Study population
7604 formalin-fixed paraffin-embedded CRC tumor 
samples submitted for molecular profiling by a commer-
cial Clinical Laboratory Improvement Amendments 
(CLIA)-certified laboratory (Caris Life Sciences, 
Phoenix, Arizona, USA) were included in the study. 
Next-generation sequencing (NGS) on DNA (Illumina 
NextSeq, 592 genes, or Illumina NovaSeq, whole-exome 
sequencing) and RNA (Illumina NovaSeq, whole-
transcriptome sequencing (WTS)) were available for all 
cases (online supplemental figure S1A).

In addition, the association between CCR5 and CCL5 
gene expression and clinical outcomes in patients 
receiving targeted treatment was assessed in two indepen-
dent cohorts of patients with CRC (online supplemental 
figure S1B): a cohort of 6341 patients from Caris CODEai 
(https://www.carislifesciences.com/products-and-​
services/artificial-intelligence/codeai/); and 429 patients 
with available RNA-sequencing (RNA-seq) data from the 
phase III Cancer and Leukemia Group B (CALGB, now 
part of the Alliance for Clinical Trials in Oncology)/
SWOG 80405 trial comparing first-line cetuximab and 
bevacizumab, in combination with either FOLFOX or 
FOLFIRI, in patients with mCRC.14

Genome and transcriptome analyses
The Caris samples were tested with NGS on a custom-
designed panel enriching 592 gene targets (Caris MI 
TumorSeek panel), WTS on RNA, and immunohisto-
chemistry (IHC). The detailed methods are provided in 
the online supplemental methods. CRC consensus molec-
ular subtypes (CMS) were assessed using RNA-seq. Gene 
set enrichment analysis (GSEA) and ingenuity pathway 
analysis (IPA) were performed based on WTS data to 
assess significantly enriched pathways according to CCR5 
and CCL5 expression. QuantiSEQ and the microenviron-
ment cell population-counter were used to quantify the 
abundance of immune and stromal cell populations in 
the TME using WTS data.

In CALGB/SWOG 80405, RNA-seq (Illumina HiSeq 
2500) was used (see online supplemental methods).

Assessment of immunotherapy-related biomarkers
Mismatch repair-deficiency (dMMR) and microsatellite 
instability (MSI) were tested through a combination of 
IHC, fragment analysis and NGS, with the resulting status 
defined as either dMMR/microsatellite instability high 
(MSI-H) or mismatch repair-proficient (pMMR)/micro-
satellite stable (MSS). The tumor mutational burden 
(TMB) was measured by counting all non-synonymous 
missense, non-sense, in-frame insertion/deletion and 
frameshift mutations found per tumor with a cut-off point 
of ≥10 mutations per megabase. Programmed cell death 
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ligand 1 (PD-L1) IHC expression was tested using the 
SP142 antibody (Spring Biosciences). Further details are 
provided in the online supplemental methods.

Statistical analysis
In the Caris cohort, top quartile transcripts per million 
(TPMs) for CCR5 and CCL5 expression were classified 
as high (Q4) while those in the bottom quartile were 
classified as low (Q1). Clinical and molecular features 
were compared between expression quartiles using the 
Wilcoxon rank-sum test, the χ2 test or Fisher’s exact test 
as appropriate. Distal tumors located in the descending 
or sigmoid colon, and rectum were classified as left-sided, 
whereas proximal tumors from the cecum, ascending or 
transverse colon as right-sided.

For the CALGB/SWOG 80405 cohort, overall survival 
(OS) was defined as the time from the date of random-
ization to death from any cause. For the Caris CODEai 
cohort, OS was defined as the time from tissue collec-
tion to last contact from an insurance claims repository, 
assuming that any patient without a claim for more than 
100 days had died, which holds true for more than 95% 
of patients with a recorded death in the National Death 
Index. Progression-free survival (PFS) was assessed in the 
CALGB/SWOG 80405 cohort as the time from random-
ization to disease progression or death from any cause. 
PFS data were not available for the Caris CODEai cohort; 
however, time-on-treatment (ToT), defined as time from 
treatment start date to last treatment date based on insur-
ance claims was used to estimate PFS. Patients who did not 
experience any events were censored at the last follow-up. 
OS, PFS and ToT were reported with Kaplan-Meier curves. 
Differences between groups were identified using log-
rank tests for marginal differences and likelihood ratio 
tests for Cox proportional hazards models with multiple 
adjustment covariates. In the Caris CODEai cohort multi-
variable analyses included covariates: age, sex, tumor 
sidedness, RAS status, BRAF status, and MSI status. In 
the CALGB/SWOG 80405 cohort, adjustment covariates 
included: age, sex, Eastern Cooperative Oncology Group 
(ECOG) performance status, primary tumor sidedness, 
RAS status, BRAF status, number of metastatic sites, back-
bone chemotherapy, and MSI status. Patient and tumor 
characteristics were tested using Kruskal-Wallis test, 
Wilcoxon rank-sum test, or Fisher’s exact test as appro-
priate. In CALGB/SWOG 80405 a composite biomarker, 
termed CCR/L5, was constructed as the mean expression 
of CCR5 and CCL5. CCR5, CCL5, and CCR/L5 expression 
were evaluated both continuously and categorically, strat-
ified into tertiles (T1 low, T2 middle, and T3 high) due to 
the smaller sample size compared with the Caris cohort. 
Treatment by expression interaction analyses were 
conducted to determine whether the effects of chemo-
therapy backbone (FOLFIRI or FOLFOX) or biologic 
agents (cetuximab or bevacizumab) on survival outcomes 
differed by gene expression (T1 or T3) group. Patients 
with missing data (N=4) were excluded from the analysis.

Statistical significance was assessed at the 0.05 alpha 
level, except when adjusted for multiplicity in families of 
tests using the Benjamini and Hochberg false discovery 
rate approach (FDR),15 reported as a “q-value”,16 in which 
case discoveries were defined by the 0.05 FDR level.

RESULTS
Correlation between CCR5 and CCL5 expression in CRC and 
expression levels in primary tumors versus metastatic sites
Among 7604 patients in the Caris data set, median CCR5 
expression was 3.20 TPMs (Q1–Q4: 1.72–5.78) whereas 
median CCL5 expression was 7.22 TPMs (3.75–13.54) 
(online supplemental figure S2A,B). Median patient age 
was lower in Q1 versus Q4 cohorts for both genes (CCR5: 
61 vs 63 years, CCL5: 60 vs 63 years, respectively, p<0.01). 
No significant differences in patient gender were observed 
when comparing Q1 and Q4 cohorts (online supple-
mental table S1). CCR5 expression was higher in tissue 
samples obtained from metastatic sites versus those from 
primary tumors (median TPM: 3.44 vs 3.05, p<0.001), 
while no difference was found in CCL5 expression levels 
(median TPM: 7.25 vs 7.16, p=1) (online supplemental 
figure S2C,D).

A linear correlation was observed between CCR5 and 
CCL5 expression (R2=0.4193, p<0.0001) (online supple-
mental figure S2E).

Clustering of CMS subtypes and primary tumor side according 
to CCR5 and CCL5 tumor expression
Both CCR5 and CCL5 TPMs were significantly higher 
in right-sided and rectal tumors than in left-sided CRC 
(CCR5 median TPMs 3.31 and 3.24 vs 2.88; CCL5 median 
TPMs 7.58 and 7.08 vs 6.11, respectively; p<0.001) 
(figure 1A–C).

CCR5 and CCL5 expression showed a strong positive 
correlation with CMS1 and CMS4 and a negative associa-
tion with CMS2 and CMS3 (p<0.0001, Q1 vs Q4), regard-
less of MSI status (figure 1A,D–G).

Association with tumor molecular characteristics and 
immune-related biomarkers
Overall, high CCR5 and CCL5 TPMs were associated with 
higher TMB (Q1 vs Q4, CCR5: 6.0% vs 12.0%, q<0.0001; 
CCL5: 3.5% vs 18.4%, q<0.0001), dMMR/MSI-H (CCR5: 
4.1% vs 9.3%, q<0.0001; CCL5: 1.8% vs 14.6%, q<0.0001) 
and PD-L1 (CCR5: 2.1% vs 6.8%, q<0.0001; CCL5: 1.2% vs 
8.8%, q<0.0001) (table 1). Similar patterns were observed 
in a separate analysis of the pMMR/MSS tumor cohort, 
where CCL5 expression remained positively associated 
with TMB and PD-L1 while CCR5 was still associated with 
PD-L1 but not TMB (table 1).

CCR5 and CCL5 TPMs were negatively associated 
with APC mutations (Q1 vs Q4, CCR5: 81.6% vs 72.3%; 
CCL5: 82.5% vs 70%) and FLT1/FLT3 copy number alter-
ations (CNA) (CCR5: 3.2%/4.1% vs 1.1%/1.8%; CCL5: 
3.3%/4.3% vs 1.1%/1.8%) in pMMR/MSS tumors (all 
q<0.01) (online supplemental figure S3A,B). Additionally, 
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Figure 1  Clustering of CMS subtypes and primary tumor side according to CCR5 and CCL5 tumor expression. Clustering of 
the Caris cohort samples based on tumor sidedness, CMS and CCR5/CCL5 expression (A) comparison of CCR5 (B) and CCL5 
(C) expression according to tumor side; and distribution of CMS according to CCR5 and CCL5 expression quartiles in the entire 
cohort (D and E, respectively) and in pMMR/MSS tumors (F and G, respectively). CMS, consensus molecular subtype; CCL5, 
C-C motif chemokine ligand 5; CCR5, C-C motif chemokine receptor 5; MSS, microsatellite stable; pMMR, mismatch repair 
proficient; TPM, transcript per millions. *Indicates a significant p-value for statistical comparison.
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CCL5 expression was also negatively associated with CDX2 
(Q1 vs Q4: 15.1% vs 7.7%) and CDK8 (2.9% vs 1.1%) 
CNA, while positively associated with BRAF and RNF43 
mutations (Q1 vs Q4: 7.2% vs 9.3% and 1.4 vs 3.4%, 
respectively) (all p<0.001 and q<0.01, except for the 
association with BRAF mutation: p=0.02, q=0.3) (online 
supplemental figure S3B). No significant differences in 
gene fusion frequencies were observed between CCR5 
and CCL5 expression quartiles.

The tumor expression of immune regulatory genes 
(PD-1, PD-L1, PD-L2, CTLA-4, CD80, CD86, TIM3, IDO1, 
LAG3, and IFN-G) was increased in CCR5 and CCL5 
high CRC, independent of MMR status (fold change in 
pMMR/MSS tumors: 0.09–0.25, Q1/Q4, all q<0.0001) 
(figure 2C,D).

Notably, higher CCR5 and CCL5 expression was asso-
ciated with higher interferon (IFN) and T-cell inflamed 
signature (TIS) scores in the pMMR/MSS cohort 
(q<0.0001, Q1 vs Q4) (table 1).

Pathway enrichment and IPA analyses
GSEA showed significant pathway enrichment in CCL5 
high tumors including apoptosis, IFN-γ response, KRAS 
signaling and PI3K/AKT/MTOR signaling (Q1 vs Q4, 
p<0.05 and FDR<0.25) (online supplemental table S2). 
No pathway met statistical significance for CCR5.

IPA results revealed upregulation or downregulation of 
multiple pathways according to CCR5 and CCL5 expres-
sion quartiles (online supplemental figure S4A,B, respec-
tively). Among upregulated pathways were PD-1/PD-L1 
cancer immunotherapy pathway, phosphatase and tensin 
homolog (PTEN) and peroxisome proliferator-activated 
receptors (PPAR) signaling, and CTLA-4 signaling in cyto-
toxic T lymphocytes for both CCR5 and CCL5 Q4 (online 
supplemental figure S4C,D), whereas Th1 and Th2 path-
ways, neuroinflammation signaling, natural killer (NK) 
cell signaling, autophagy, nitric oxide and reactive oxygen 
species (ROS) production in macrophages, JAK/STAT 
and PI3K/AKT signaling, in addition to several others, 
were downregulated.

TME cell infiltration according to CCR5 and CCL5 expression 
in pMMR/MSS tumors
High CCR5 and CCL5 TPMs were associated with higher 
immune cell infiltration (including M1 and M2 macro-
phages, myeloid dendritic cells, B cells, NK cells, CD4+ 
and CD8+ T cells, and regulatory T cells), and higher 
concentrations of endothelial cells and cancer associated 
fibroblasts (CAFs) in the TME in pMMR/MSS tumors (all 
q<0.001) (figure 2A,B). A dedicated analysis comparing 
the distribution of infiltrating immune cell ratios in 
high versus low CCR5/CCL5 expressing tumors showed 
a significant decrease of M1/M2 macrophages (CCR5: 
1.26 vs 1.65; CCL5: 1.37 vs 1.53), neutrophil/lymphocytes 
(CCR5: 0.54 vs 0.80; CCL5: 0.48 vs 0.80), NK (CCR5: 0.30 
vs 0.41; CCL5: 0.29 vs 0.42) and B cells (CCR5: 0.35 vs 0.39; 
CCL5: 0.35 vs 0.39) ratios, whereas an increase in regula-
tory T cells (Tregs) ratio (CCR5: 0.18 vs 0.12; CCL5: 0.19 
vs 0.12) (p<0.0001 for all comparisons) (online supple-
mental figure S5).

Association between CCR5 and CCL5 gene expression and 
clinical outcomes
Patient demographics and tumor characteristics of 
the CALGB/SWOG 80405 cohort according to CCR5 
and CCL5 expression tertiles, as individual genes and 
composite CCR/L5 biomarker, are summarized in online 
supplemental table S3,S4. Notably, the linear correlation 
between CCR5 and CCL5 expression (R=0.68, p<2.2e-16) 
and the association of high CCR5 and CCL5 expression 
with tumor TMB-high (TMB-H) (p<0.0001) and dMMR/
MSI-H status (p=0.0034 and p<0.0001, respectively) were 
validated in this independent cohort (online supple-
mental figure S6A–C). In patients receiving first-line 
treatment within the CALGB/SWOG 80405 phase III 
trial, a significant interaction between chemotherapy 
backbone and the first and third tertiles of CCR5 
expression was found for both PFS and OS in patients 
receiving cetuximab-based treatment (interaction p-value 
(Pintx)=0.0027 and 0.002, respectively), favoring treat-
ment with FOLFOX plus cetuximab in tumors with low 

Table 1  Comparison of immunotherapy-related markers between CCR5 and CCL5 expression quartiles

CCR5 CCL5

All (N=7,604) pMMR/MSS All (N=7,604) pMMR/MSS

Q1 Q4 q-value Q1 Q4 q-value Q1 Q4 q value Q1 Q4 q-value

MSI-H/dMMR 4.1% 9.3% <0.05 – – – 1.8% 14.6% <0.05 – – –

TMB-H (≥10/Mb) 6% 12% <0.05 1.9% 2.7% 1 3.5% 18.4% <0.05 1.8% 3.9% <0.05

PD-L1≥5% 2.1% 6.8% <0.05 1.8% 4.3% <0.05 1.2% 8.8% <0.05 1.2% 5.1% <0.05

TIS score – – – −140 120 <0.0001 – – – −135 118 <0.0001

IFN score – – – −0.49 −0.25 <0.0001 – – – −0.51 −0.21 <0.0001

Significant q-values (q < 0.05) are highlighted in bold.
CCL5, C-C motif chemokine ligand 5; CCR5, C-C motif chemokine receptor 5 ; dMMR, mismatch repair-deficient; H, high; IFN, interferon 
gamma score; MSI, microsatellite instability; MSS, microsatellite stable; PD-L1, programmed cell death ligand 1; pMMR, mismatch repair 
proficient; TIS, T-cell inflamed score; TMB, tumor mutational burden.
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Figure 2  TME cell infiltration and immune-related gene expression according to CCR5 and CCL5 expression in pMMR/
MSS tumors. Comparison of immune cells in the TME according to CCR5 (A) and CCL5 (B) expression quartiles (Q1 vs Q4) 
and comparison of immune regulatory gene expression according to CCR5 (C) and CCL5 (D) expression quartiles (Q1 vs Q4) 
in pMMR/MSS tumors from the Caris cohort. CCL5, C-C motif chemokine ligand 5; CCR5, C-C motif chemokine receptor 5; 
FC, fold change, MSS, microsatellite stable; pMMR, mismatch repair proficient; TME, tumor microenvironment. *Indicates a 
significant q-value for statistical comparison.
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CCR5 expression (figure 3A–D). Additionally, a significant 
interaction was found in patients treated with FOLFOX 
between biologic agent and CCR5 expression for both 
PFS (Pintx=0.009) and OS (Pintx=0.00087), favoring 
treatment with FOLFOX plus bevacizumab in CCR5 high 
tumors (figure  3E,F). Similar results were observed for 
CCL5 (online supplemental figure S7). When CCR5 and 
CCL5 expression were combined as a comprehensive 
biomarker (named CCR/L5), patients treated with cetux-
imab with high CCR/L5 expression had shorter PFS (T3 
(N=68) vs T1 (N=65), median PFS: 8.0 vs 12.7 months, 
HR 1.48, 95% CI: 1.04 to 2.11, p=0.027) and OS (19.0 
vs 34.1 months, HR 1.62, 95% CI: 1.10 to 2.37, p=0.014) 
(figure 4A,B). These results were even more significant 
when cetuximab was combined with FOLFOX chemo-
therapy (PFS: 6.1 vs 13.1 months, HR 1.80, 95% CI: 1.17 
to 2.76, p=0.0073; and OS: 13.1 vs 40.2 months, HR 2.03, 
95% CI: 1.28 to 3.22, p=0.0024, respectively, in T3 (N=46) 
vs T1 (N=45)) (figure 4C,D). No significant differences 
were found in bevacizumab-treated patients or patients 
treated with cetuximab in combination with FOLFIRI, 
however the interaction between CCR/L5 expression 
and treatment arm was statistically significant for biologic 
agents (OS Pintx=0.012) and for chemotherapy back-
bone in cetuximab-treated patients (PFS Pintx=0.016, 
and OS Pintx=0.015). A sensitivity analysis in molecularly 
selected patients with RAS/BRAF wild-type and left-sided 
tumor location (N=179) confirmed that high combined 
CCR/L5 expression was associated with significantly 
shorter OS in the overall patients treated with cetuximab 
(N=86, median OS 24.9 vs 48.2 months, HR 2.04, 95% CI: 
1.8 to 3.85, p=0.03) and those treated with the combina-
tion of cetuximab plus FOLFOX (N=62, median OS 24.9 
vs 50.1 months, HR 2.19, 95% CI: 1.04 to 4.62, p=0.044) 
(figure  4E,F). CCR/L5 showed significant interaction 
for both PFS (Pintx=0.0097) and OS (Pintx=0.00047) 
in patients treated with FOLFOX. No differences were 
observed in patients receiving bevacizumab-based or 
FOLFIRI-based treatments in this subgroup (online 
supplemental figure S8). Described significant results 
for individual genes and combined CCR/L5 held true 
when the gene expression was modeled as a continuous 
variable.

In the Caris CODEai cohort, high CCR5 tumor gene 
expression was statistically associated with longer survival 
both in the overall cohort and in pMMR/MSS tumors, 
however, the absolute numeric difference between 
groups was limited (OS: 29.2 vs 26.6 months, HR 0.88; 
95% CI: 0.82 to 0.94, p<0.001, and 28.7 vs 26.6 months, 
HR 0.89; 95% CI: 0.83 to 0.95, p<0.0001, respectively, for 
Q4 vs Q1, figure 5A,C). No differences in survival were 
observed based on CCL5 expression (figure  5B,D). In 
an exploratory univariate analysis stratified according 
to tumor sidedness in pMMR/MMS tumors, high tumor 
CCR5 expression levels were statistically associated with 
ToT with bevacizumab regardless of tumor side (HR 0.82; 
p=0.042, and HR 0.80; p=0.044, for left-sided and right-
sided tumors, respectively, Q4 vs Q1) (figure 5E,F, online 

supplemental table S1). However, the absolute clinical 
benefit was limited (2.1 months and 0.9 months, respec-
tively). Statistical significance was also present for ToT 
with oxaliplatin-based regimens in right-sided tumors (Q4 
vs Q1, HR 0.79, p=0.0016), however, the absolute numeric 
difference between median ToT of the two groups was 
lower than 0.1 month and this result was not considered 
clinically meaningful (figure  5G, online supplemental 
table S5). An exploratory comparison was performed in 
dMMR/MSI-H tumors with available CODEai and gene 
expression data (N=83 for CCR5 and N=137 for CCL5), 
but no significant associations were identified with immu-
notherapy treatment outcomes.

DISCUSSION
The CCR5/CCL5 axis has emerged as a key pathway 
among the chemokine networks to support tumor 
progression through multiple mechanisms. Increasing 
interest has been focused on the role of this axis in regu-
lating the TME, particularly with respect to immune cell 
population trafficking and macrophages M2 polarization 
to support an immunosuppressive state that facilitates 
tumor growth and metastasis. Several in vitro and in vivo 
studies have provided the rationale for clinical testing of 
CCR5 inhibitors in different cancer types, including CRC. 
However, the molecular landscape associated with CCR5 
and CCL5 altered gene expression in CRC remains largely 
unexplored. In this large-scale profiling study, we were 
able to characterize distinct molecular features based on 
tumor CCR5 and CCL5 expression and to further explore 
how CCR5 and CCL5 expression may impact patient treat-
ment outcome.

Our study revealed a strong positive association between 
CCR5 and CCL5 and immune-related biomarkers, with 
higher rates of TMB-H, dMMR/MSI-H, and tumor PD-L1 
observed in CCR5/CCL5 high tumors compared with low, 
which held true when the analysis was limited to pMMR/
MSS tumors. Furthermore, we found that CCR5 and CCL5 
TPMs had an inverse correlation with the rates of APC 
mutations and FLT1/FLT3 CNA in pMMR/MSS tumors. 
APC is a key tumor suppressor gene which regulates canon-
ical WNT signaling, while FLT1 encodes for VGFR1, and 
FLT3 for a receptor tyrosine kinase that controls prolif-
eration and differentiation of hematopoietic stem cells. 
Consistently, CCR5 and CCL5 expression showed a strong 
positive correlation with CMS1 (MSI immune) and CMS4 
(mesenchymal), and a negative association with CMS2 
(Canonical) and CMS3 (metabolic), regardless of MSI 
status. In addition, both CCR5 and CCL5 expression was 
higher in right-sided and rectal tumors and CCR5 expres-
sion was higher in metastatic sites than primary. To our 
knowledge, this is the first study to describe these associ-
ations in CRC.

Notably, tumors classified as CMS1 have been reported 
to be characterized by a proximal location, MSI-H, high 
TMB, hypermutation and strong immune activation with 
robust immune cell infiltration and few CAFs.17 On the 
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Figure 3  Association between CCR5 expression and patient outcomes in the CALGB/SWOG 80405 trial. Kaplan-Meier curves 
show OS and PFS stratified by CCR5 tumor expression tertiles according to different treatments of the CALGB/SWOG 80405 
trial (RNA sequencing cohort): (A) cet/FOLFOX PFS, (B) cet/FOLFOX OS, (C) cet/FOLFIRI PFS, (D) cet/FOLFIRI OS, (E) bev/
FOLFOX PFS, (F) bev/FOLFOX OS. The statistical comparison is performed for T3 versus T1 within each treatment (p-value). 
Ptrend corresponds to the statistical test result by evaluating gene expression as a continuous variable. Bev, bevacizumab; 
CALGB, Cancer and Leukemia Group B; CCR5, C-C motif chemokine receptor 5; cet, cetuximab; OS, overall survival; PFS, 
progression-free survival.
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Figure 4  Association between CCR/L5 combined expression and patient outcomes in the CALGB/SWOG 80405 trial. Kaplan-
Meier curves show OS and PFS stratified by CCR/L5 composite biomarker tumor expression tertiles in the CALGB/SWOG 
80405 trial: (A) overall cetuximab-based treatment PFS, (B) overall cetuximab-based treatment OS, (C) overall cetuximab plus 
FOLFOX treatment PFS, (D) overall cetuximab plus FOLFOX treatment OS, (E) cetuximab-based treatment OS in RAS/BRAF 
wild-type left-sided tumors, (F) cetuximab plus FOLFOX treatment OS in RAS/BRAF wild-type left-sided tumors. The statistical 
comparison is performed for T3 versus T1 within each treatment (p-value). Ptrend corresponds to the statistical test result by 
evaluating gene expression as a continuous variable. CALGB, Cancer and Leukemia Group B; CCL5, C-C motif chemokine 
ligand 5; CCR5, C-C motif chemokine receptor 5; cet, cetuximab; OS, overall survival; PFS, progression-free survival.
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Figure 5  Association between CCR5 and CCL5 expression and patient outcomes in the Caris CODEai cohort. Kaplan-Meier 
curves show OS comparing CCR5 (A) and CCL5 (B) tumor expression levels in the full cohort and OS in pMMR/MSS tumors 
according to CCR5 (C) and CCL5 (D) expression regardless of treatment. Time-on-treatment of bevacizumab-based regimens 
by tumor-side (C: left-sided, F: right-sided) and oxaliplatin-based regimens in right-sided tumors (G) according to CCR5 
expression in pMMR/MSS tumors. Patient data was obtained from the Caris CODEai. Q1 and Q4 are defined in individual 
cohorts to balance the arms. CCL5, C-C motif chemokine ligand 5; CCR5, C-C motif chemokine receptor 5; CRC, colorectal 
cancer; MSS, microsatellite stable; OS, overall survival; pMMR, mismatch repair proficient.
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other hand, CMS4 tumors are characterized by a distal 
location, prominent transforming growth factor-beta 
(TGF-β) activation, stromal invasion and angiogenesis, 
mesenchymal activation, and high levels of CAFs.17 In 
our study, higher CCR5 and CCL5 TPMs were associated 
with higher immune cell infiltration (M1 and M2 macro-
phages, myeloid dendritic cells, B cells, NK cells, CD4+ 
and CD8+ Tcells, and regulatory T cells), endothelial cells 
and CAFs in the TME of pMMR/MSS tumors. However, 
when the distribution of infiltrating immune cell ratios 
rather than the absolute percentages were compared in 
high versus low CCR5/CCL5 expressing tumors, the rela-
tive ratios of M2 macrophages and Tregs were increased, 
suggesting a shift towards a more immunosuppressive 
TME in high CCR5 and CCL5 tumors related to changes 
in the balance of the relative abundance of infiltrating 
immune cells. Indeed, signaling through CCR5 can 
promote the recruitment of immunosuppressive immune 
and stromal cells and M2 polarization of macrophages 
within the TME.13 Furthermore, it has been reported 
that CCL5 is produced by T-lymphocytes at the invasive 
tumor margin in CRC liver metastasis samples.13 These 
T-lymphocytes had high expression of PD-1 (98%) and 
the local tissue had very low levels of IFN-γ suggesting 
an immune cell exhausted tissue phenotype. Exposure 
to the CCR5 antagonist maraviroc resulted in increased 
levels of IFN-γ as well as tumor-associated macrophages 
with increased STAT3 levels suggesting reversion to an M1 
pro-inflammatory polarization state.13 Additionally, high 
CCR5 and CCL5 tumor expression correlated in our series 
with increased expression of immune checkpoint genes 
encoding for immunoinhibitory molecules PD-1/PD-L1/
PD-L2, CTLA-4/CD80, TIM3, IDO1, and LAG3 which are 
linked to tumor immune-evasion mechanisms.18 19 The 
introduction of immune checkpoint inhibitors (ICIs) 
such as those that exert an anti-PD-1 and anti-CTLA-4 
effect has revolutionized the treatment of dMMR/MSI-H 
mCRC.20 However, patients with CRC whose tumors 
manifest dMMR/MSI-H CRC only represent about 5% of 
all patients with mCRC.21 It is believed that primary resis-
tance to ICIs may be linked to the immunological compo-
sition of the TME.22 More specifically, TME niches that 
have limited immunological infiltration (those classified 
as having an immune desert environment or as immune 
exclusion tumors) may not respond to ICI therapy. Recent 
studies testing combined treatment with ICIs and CCR5 
blockade in refractory pMMR CRC, reported that treat-
ment was feasible and showed a favorable toxicity profile 
(NCT03274804, NCT03631407). While overall response 
rates were limited, individual patients experienced 
prolonged disease stabilizations, and encouraging results 
were observed in terms of higher than expected disease 
control rates observed in patients treated post-study with 
later lines of treatment and longer OS than expected 
for these heavily pretreated patients.23 Our data further 
support the rationale of exploiting the CCR5/CCL5 
axis as a therapeutic target to leverage the modulation 
of the immune TME through the combination of CCR5 

inhibitors and ICIs aiming to overcome resistance and 
expand the benefit of immunotherapy to pMMR/MSS 
advanced CRC. To this end, results of ongoing studies 
such as the LUMINESCENCE trial, evaluating the combi-
nation of nivolumab plus ipilimumab and maraviroc in 
advanced mCRC and pancreatic cancer (NCT04721301) 
and the BMS-813160 study (NCT03184870), a large phase 
1b/2 study investigating a dual CCR2/CCR5 antagonist 
alone or in combination with either chemotherapy or 
nivolumab or chemotherapy plus nivolumab in advanced 
solid tumors, will be paramount to drive the clinical 
advancement of such treatment strategies. On the other 
hand, we observed higher IFN and TIS scores, which 
have been previously associated with increased response 
to PD-1 blockade,24 25 in pMMR/MSS tumors with high 
CCR5 and CCL5 expression levels. Similarly, CCL5 high 
tumors displayed higher TMB, which has been also shown 
to be an independent predictive marker of response to 
anti PD-1.25 At the same time, however, our IPA analysis 
highlighted an upregulation of the PD-1/PD-L1 pathway 
and CTLA-4 signaling in cytotoxic T lymphocytes pathway, 
alongside a downregulation of inflammatory-related 
pathways and cellular signaling involved in TME immune-
modulation in the same groups. This evidence suggests 
that the balance between pro-inflammatory and immu-
nosuppressive gene expression signatures and immune 
features associated with CCR5/CCL5 expression should 
be taken into account, rather than individual scores, 
when evaluating the potential impact on ICI response.

We were not able to show any association between ICI 
treatment outcomes and CCR5/CCL5 tumor gene expres-
sion, most probably due to the limited number of patients 
with dMMR/MSI-H tumors in our treatment data cohort. 
On the other hand, when analyzing outcome data from 
the phase III, randomized, first-line CALGB/SWOG 80405 
cohort, a significant interaction was found between the 
chemotherapy backbone and CCR5/CCL5 expression for 
both PFS and OS in patients receiving cetuximab-based 
treatment, favoring FOLFOX plus cetuximab in patients 
with low CCR5 or CCL5 expression. Similarly, a significant 
interaction was found in patients treated with FOLFOX 
between biologic agent and CCR5 expression favoring 
treatment with FOLFOX plus bevacizumab in CCR5 high 
tumors. Based on the linear correlation observed in both 
the Caris cohort and the CALGB/SWOG 80405 RNA-seq 
data between CCR5 and CCL5 expression in CRC tumor 
samples, and the overlapping results of individual gene 
analyses, we developed a comprehensive biomarker 
by combining the two genes to better recapitulate the 
combined effects of increased and decreased expression 
on the CCR5/CCL5 axis. Results of the composite CCR/
L5 biomarker align with single gene analyses. Notably, 
when patients were selected by RAS/BRAF wild-type muta-
tional status and left-sided primary tumor, to reflect those 
patients who derive the highest benefit from anti-EGFR 
treatment in the clinical setting, the survival benefit 
associated with CCR/L5 expression still held true, and 
low tumor CCR/L5 expression identified patients with 
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median OS of 50 months when treated with cetuximab 
in combination with FOLFOX chemotherapy. Our group 
previously reported that functional single nucleotide 
polymorphisms in the CCL5/CCR5 axis genes were asso-
ciated with efficacy of anti-EGFR and anti-VEGF thera-
pies.7–10 CCR5 rs1799988 T allele and CCL5 rs2280789 G 
allele carriers (associated with lower serum CCL5 levels) 
were associated with shorter OS in patients treated with 
first-line FOLFIRI plus cetuximab within the FIRE-3 trial, 
with opposite allelic effect between primary tumor loca-
tions (left-sided vs right-sided).8 These results combined 
with our current findings in the CALGB/SWOG 80405 
trial strongly suggest that tumor CCR5/CCL5 expression 
may be a valuable biomarker to personalize first-line 
treatment selection both in terms of biologic agent and 
chemotherapy backbone, and strategies to downregu-
late CCR5 signaling may be effective in selected patient 
groups particularly in combination with anti-EGFRs plus 
oxaliplatin.

High CCR5 tumor gene expression was associated 
with longer survival in our large real-world patient 
cohort, which appears in contrast with previous evidence 
reporting CCR5 as a negative prognostic biomarker in 
CRC.1 However, it has to be noted that the absolute survival 
benefit between groups was limited and no differences in 
survival were observed based on CCL5 expression in the 
same cohort. Hence, further validation is needed before 
drawing any definitive conclusion. A marginal treatment 
benefit was also observed with ToT with bevacizumab in 
both right-sided and left-sided pMMR/MSS CRCs in the 
Caris CODEai cohort. When interpreting these results, 
it has to be considered that, due to the lack of detailed 
information on patient treatment sequences, data were 
pulled together based on therapeutic agents regardless of 
treatment line which could have introduced confounding 
factors that we are unable to account for and may have 
hindered the identification of other significant interac-
tions in this cohort.

Limitations of our current study include the retrospec-
tive nature of the analysis, the heterogeneity of the Caris 
study population which is unselected for tumor stage 
(not available for cases within this cohort), and the lack 
of information on treatment sequences in Caris CODEai. 
Additionally, our study lacks CCR5 and CCL5 IHC data 
to correlate with our gene expression analysis and verify 
the functional activation of the CCR5/CCL5 axis in high 
CCR5/CCL5 expressing tumors. Another limitation to 
be acknowledged is that the gene expression thresholds 
used in this study were derived internally from our data 
sets. Nevertheless, the scope of our current work was 
biomarker discovery, therefore, further prospective vali-
dation of the prognostic and predictive value of CCR5 
and CCL5 tumor gene expression in CRC and determina-
tion of the optimal cut-off for treatment decision-making 
is warranted.

In conclusion, our comprehensive analysis shows that 
CCR5 and CCL5 expression identifies a distinct subset of 
patients with CRC that displays unique tumor molecular 

features, gene expression profiles and TME cell infil-
tration, and derive differential benefit from anticancer 
treatment depending on biologic agent, chemotherapy 
backbone and primary tumor side. These findings 
strongly suggest that targeting the CCR5/CCL5 axis 
may have relevant clinical applications in selected CRC 
subgroups and support the use of strategies to counteract 
the CCL5/CCR5 axis to modulate the immune TME for 
CRC treatment.
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