Article Text
Abstract
Background Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) generally has a poor prognosis for patients with limited treatment options. While incorporating immune checkpoint inhibitors (ICIs) has now become the standard of care, the efficacy is variable, with only a subset of patients responding. The complexity of the tumor microenvironment (TME) and the role of tertiary lymphoid structures (TLS) have emerged as critical determinants for immunotherapeutic response.
Methods In this study, we analyzed two independently collected R/M HNSCC patient cohorts (n=45, whole slides) from the Royal Brisbane and Women’s Hospital (RBWH) and Princess Alexandra Hospital (PAH) to better understand the role of TLS in response to ICIs. Utilizing a multi-omics approach, we first performed targeted proteomic profiling covering tumour/immune cell biology, metabolic activity and immune checkpoints within the tumour microenvironment. This was further characterized by spatially resolved whole transcriptome profiling of TLSs and germinal centers (GCs).
Results Our proteomic analysis revealed the presence of T lymphocyte markers, including CD3, CD45, and CD8, expressing cells and upregulation of immune checkpoint marker PD-L1 within tumor compartments of patients responsive to ICIs, indicative of ‘hot tumor’ phenotypes. We also observed the presence of antigen-presenting cells marked by expression of CD40, CD68, CD11c, and CD163 with upregulation of antigen-presentation marker HLA-DR, in patients responding to ICIs. Transcriptome analysis of TLS and GCs uncovered a marked elevation in the expression of genes related to immune modulation, diverse immune cell recruitment, and a potent interferon response within the TLS structure. Notably, the distribution of TLS-tumor distance was found to be significantly different across response groups (H = 9.28, p = 0.026). The proximity of TLSs to tumor cells was found to be a critical indicator of ICI response, implying that patients with TLSs located further from tumor cells have worse outcomes.
Conclusions The study underscores the multifaceted role of TLSs in modulating the immunogenic landscape of the TME in R/M HNSCC, likely influencing the efficacy of ICIs. Spatially resolved multi-omics approaches offer valuable insights into potential biomarkers for ICI response and highlight the importance of profiling the TME complexity when developing therapeutic strategies and patient stratification.
Ethics Approval Written informed consent has been obtained from all participants. This study has Metro South Human Research Ethics approval.
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.