Article Text

Download PDFPDF

P75. Genetic engineering of T cells for increased homing to the tumor site
  1. M Idorn1,
  2. GH Andersen1,
  3. HL Larsen1,
  4. JH van den Berg1,
  5. Ö Met1 and
  6. P thor Straten1
  1. Aff1 grid.411900.d0000000406468325Center for Cancer Immunterapi, CCITHerlev Universitets Hospital Herlev Ringvej 75, 65Q9 2730 Herlev Denmark

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Meeting abstracts

Adoptive cell transfer (ACT) using in vitro expanded T cells from biopsy material represents a highly promising treatment of disseminated cancer. ACT in its present form is rather crude and improvements seem within reach. Recruitment of transferred lymphocytes to the tumor site is a crucial step in ACT efficacy; however, quite few T cells actually reach the tumor site upon administration. In the present pre-clinical study we have genetically engineered T cells aiming at increasing the homing of T cells by matching expression of chemokine receptors on T cells to chemokines secreted by the tumor, thus improving anti-tumor efficacy of ACT. By PCR analysis we found that several malignant melanoma (MM) cell lines showed expression of cytokines CXCL8/IL-8, CXCL12/SDF-1 and CCL2, which was confirmed by ELISA analysis of MM conditioned medium. Taking advantage of mRNA electroporation we successfully transfected T cells with mRNA encoding the chemokine receptors CXCR2 and chimeric receptor CXCR4-R2 on the cell surface, the latter expressing the intracellular region of CXCR2 allowing expression in T cells. Work is in progress, but so far chemokine receptor CXCR2 and chimeric receptor CXCR4-R2 transfected T cells are capable of migrating towards their ligands, CXCL8 and CXCL12 respectively, in in vitro transwell migration assays. In vitro studies on the transfection and function of the CXCR4 and CCR2-R2 chimeric receptors as well as in vivo migration studies have been initiated, and data will be presented at the meeting.