Article Text
Statistics from Altmetric.com
- Dendritic Cell
- Peripheral Blood Mononuclear Cell
- Cancer Immunotherapy
- Good Manufacture Practice
- Human Dendritic Cell
Meeting abstracts
Background
Although clinical studies have established that antigen-loaded dendritic cells (DCs) vaccines are safe and promising therapy for various kinds of malignancies, their clinical efficacy remains to be established. Issues that limit the clinical efficacy of DC-based immunotherapy, as well as the difficulty of the industrial production of DCs, are largely due to the limited number of autologous DCs available from each patient (Kato T., et al. Neoplasia 2010), and it is necessary to prepare an enough number of DCs for effective treatments of tumors. In this study, therefore, we attempted to expand functional human DCs of cancer patients ex vivo.
Methods
The method to produce DCs, prepared in accordance with Good Manufacturing Practice (GMP) guidelines, is an optimization of ex vivo preparation method for generating large numbers of DCs from peripheral blood mononuclear cells (PBMCs) obtained by leukapheresis for clinical studies. Several fraction-depleted PBMCs were expanded and differentiated into DCs in the presence of optimal cytokine cocktails for 3-4 weeks by floating cultivation.
Results
By this method, about 1x109 CD11c+ cells could be obtained. These cells had typical features (endocytotic activity, expression of HLA-DR, adhesion molecules, chemokine receptor and co-stimulatory molecules, production of inflammatory cytokines, allo-MLR activity and positive for tetramer assay) of conventional myeloid DCs in vitro. Therefore, the concept of DC expansion should contribute significantly to the progress of DC immunotherapy.
Conclusions
We established a new culture method to expand human DCs. Expanded DCs had properties that were required to obtain therapeutic gain. Thus, we expect that this technology will improve therapeutic gain of cancer and alleviate patients' burden of apheresis, and be able to contribute largely to both basic and clinical research of human cancer immunotherapy.