Article Text

Download PDFPDF

Tumor-derived alpha fetoprotein directly impacts human natural killer cell activity and viability
  1. Lazar Vujanovic1,
  2. Elizabeth Stahl1,
  3. Angela Pardee1,
  4. Simon Watkins2,
  5. Gregory Gibson2 and
  6. Lisa H Butterfield3
  1. Aff1 grid.21925.3d0000000419369000University of Pittsburgh Cancer Institute Pittsburgh PA USA
  2. Aff2 grid.21925.3d0000000419369000Department of Cell Biology and PhysiologyUniversity of Pittsburgh School of Medicine Pittsburgh PA USA
  3. Aff3 grid.21925.3d0000000419369000University of Pittsburgh Pittsburgh PA USA

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Meeting abstracts

Alpha-fetoprotein (AFP) is an oncofetal antigen produced by hepatocellular carcinomas (HCC). Previous studies demonstrated that tumor-derived AFP (tAFP) is a glycoprotein that has an immunosuppressive role on natural killer (NK), T, B, and dendritic (DC) cells which may play a role in HCC pathogenesis. Defects in NK cells have been attributed to tAFP-mediated immunosuppression of DC. However, a direct tAFP effect on NK cells remains unexplored. Here we compared the ability of cord blood-derived AFP (nAFP) to that of tAFP to modulate human NK cell activity and longevity in vitro. Short-term exposure to tAFP and, especially, nAFP proteins induced a unique pro-inflammatory, IL-2 hyperresponsive phenotype in healthy donor NK cells as measured by CD69 upregulation, IL-1β, IL-6 and TNF secretion, and enhanced tumor cell killing. In contrast, extended co-culture with tAFP, but not nAFP, inhibited NK cell proliferation and viability. NK cell activation was directly mediated by the AFP protein itself, while their viability was affected by the low molecular mass cargo that co-purified with tAFP. Overall, these data show that nAFP and tAFP induce similar yet distinct changes in NK cell function and viability, respectively. Defining the impact of circulating AFP on NK cells may be crucial to understand the NK cell functional deficits described in HCC patients.