Article Text

Download PDFPDF

Anti-PD-1 mAb pre-radiotherapy (RT) loading dose and fractionated RT induce better tumor-specific immunity and tumor shrinkage than sequential administration in an HPV+ head and neck cancer model
  1. Raghvendra M Srivastava1,
  2. David A Clump2 and
  3. Robert L Ferris3
  1. Aff1 grid.21925.3d0000000419369000University of Pittsburgh Cancer Institute Pittsburgh PA USA
  2. Aff2 grid.412689.00000000106507433UPMC Department of Radiation Oncology Pittsburgh PA USA
  3. Aff3 grid.21925.3d0000000419369000Department of Otolaryngology and Cancer Immunology ProgramUniversity of Pittsburgh Cancer Institute Pittsburg PA USA

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Meeting abstracts

Radiotherapy (RT) is a standard therapeutic strategy in the treatment in head and neck cancer (HNC), but many patients still experience recurrence and metastasis. Interestingly, radiotherapy (RT) may also induce immunomodulatory effects. Given the recent, exciting responses seen using anti-PD-1 (programmed death-1) checkpoint blockade immunotherapy in recurrent/metastatic disease, including HNC, we evaluated the combination of RT with anti-PD-1 therapy in a pre-clinical mouse model of locally advanced, untreated HPV-positive HNC. We compared utilizing PD-1 blockade before, during or after RT, as well as whether a single large faction (12Gy) or multiple smaller RT doses (2 Gy X 10 fractions) confers optimal antitumor immune responses and tumor shrinkage. We observed that fractionated doses of RT induced the highest PD-L1 (programmed death-ligand 1) expression on HNC cells in vitro and in treated mice. A loading dose of anti-PD-1 mAb therapy prior to RT appeared to be important for best therapeutic outcome, with greatest tumor response and tumor-specific immunity using PD-1 Ab loading dose than sequential administration of anti-PD-1 mAb after fractionated RT (p < 0.0001). Expression and intensity of PD-1 receptor expression on circulating T cells differentially impacted the T cell phenotype and anti-tumor outcome, with loss of PD-1(high) exhausted T cells during the best tumor response (p < 0.05). The combination of fractionated RT + anti-PD-1 Ab optimally upregulated the frequency of HPV E7 tumor antigen-specific T cells (p < 0.05). This study may facilitate strategies required for the combination of RT and immune checkpoint inhibitor in clinical trials, enabling more effective clinical activity and biomarker evaluation.