Article Text

Download PDFPDF

Use of magnetic resonance targeting to steer ov-loaded cell-based therapies to tumor sites in vivo
  1. Munitta Muthana1,
  2. Aneurin Kennerley1,
  3. Emer Murphy1,
  4. Russell Hughes1,
  5. Joe Conner2,
  6. Fiona Wright1,
  7. Mark Lythgoe3,
  8. Jon Dobson4,
  9. Jim Wild1 and
  10. Claire Lewis1
  1. Aff1 grid.11835.3e0000000419369262University of Sheffield Sheffield UK
  2. Aff2 grid.460125.4Virttu Biologics Glasgow UK
  3. Aff3 grid.83440.3b0000000121901201University College London London UK
  4. Aff4 grid.15276.370000000419368091University of Florida Florida FL USA

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Meeting abstracts


Despite considerable progress in the development of cell-based therapies, targeted delivery to specific tissues - particularly those deep in the body where direct injection is not possible - has been problematic. Here we show that tumour-conditioned macrophages infected with oncolytic HSV Seprehvir display a classic activated (M1) profile characterized by the expression of pro-inflammatory factors such as iNOS, IL-6, IL-8 and tumor necrosis factor-α (TNF-α). Furthermore, the M1 macrophages can be magnetically labeled using super-paramagnetic iron oxide nanoparticles (SPIOs) and then steered from the bloodstream into deep target tissues using pulsed magnetic-field gradients inherent to all magnetic resonance imaging systems (MRI). We have called this approach magnetic resonance targeting (MRT) and have used it to deliver a cell-based oncolytic virotherapy.


SPIO-loaded macrophages, armed with Seprehvir, were administered intravenously to mice bearing orthotopic primary and metastatic (lung) prostate tumors. Mice were positioned in the MRI scanner and pulsed magnetic field gradients were applied for 1 hour, to steer the magnetic cells towards the target site by MRT (MRT). In control conditions mice were exposed to the static magnetic field of the scanner but gradients were not pulsed (No MRT).


MRI steering significantly increased uptake of SPIO-loaded macrophages in primary prostate tumours (MRT: 42.2%±2.5 vs. No MRT: 7.17%±0.8, p=0.0001) and pulmonary metastasis (MRT: 17.7%±4 vs. No MRT:4.4%±2.6, p=0.01) as assessed by magnetic relaxometry and MRI and post-mortem by flow cytometry and histology. Crucially, this increased uptake of magnetic, Seprehvir-armed macrophages led to marked tumour shrinkage and reduced metastatic burden.


Our study demonstrates the potential for clinical MRI scanners not only to image such magnetically labeled cells after their injection into the body, but also to steer non-invasively, therapeutically-loaded cells specifically to one or more tumors within the body.