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Description of the technology
Tumor rejection antigens allow tumors sufficiently
distinct from normal tissue to activate the immune sys-
tem and induce an efficient anti-tumor response. Tumor
mutated specific antigens (TMSA, neoantigens) without
central tolerance are major tumor rejection antigens.
The recent developments of innovative deep sequencing
technologies (at an affordable cost) along with advances
in bioinformatics have enabled systemic analysis of the
mutation load of the tumor as well as identification of
the potentially immunogenic neoantigens. T cell reactiv-
ity against these predicted neoantigens can then be ana-
lyzed [1, 2]. This novel approach allows the discovery of
the mutated genes in individual tumors and assessment
of the immunogenicity of these neoepitopes. It consists
of several key steps as illustrated in Fig. 1, including a)
sample collection and storage, b) whole exome sequen-
cing to identify the mutations by using different compu-
tational and mutation calling tools, c) RNA-seq analysis
to focus specifically on the expressed mutations, d) iden-
tification of neoepitopes in silico with computational
algorithms for MHC class I and class II binding as well
as e) use of tandem minigene libraries for class II epi-
tope screening and f) neoantigen specific T cell assays to
differentiate trueimmunogenic neoepitopes from puta-
tive ones. Tumor and non-transformed cells (usually
PBMCs) from the same patients can be sequenced to de-
termine the mutation load and the full range of genomic
alterations within a tumor, such as nucleotide substitu-
tions, structural rearrangements and copy number

alterations. The data to date indicate that the vast major-
ity of mutated antigens are not shared between patients,
and are considered patient-specific [1]. The genetic land-
scape and the full spectrum of genomic alterations in
each individual tumor provide potential guidance for
personalized cancer immunotherapy and precision
oncology.

Type of data obtained/readout
Deep sequencing to assess the mutations present within
the protein-encoding regions of the genome (the exome)
of an individual tumor will generate a unique set of data
for each tumor. Whole exome sequencing data from the
tumor sample and non-transformed cells will be used to
detect nonsynonymous somatic mutations with the use
of mutation calling tools. RNA seq analysis will be used
to identify expressed mutations in order to predict po-
tential neoantigens. Epitope prediction algorithms based
on published or submitted MHC Class I and II binding
data will provide estimates of binding affinity to identify
putative T cell neoepitopes. Data resulting from func-
tional assays, including combinatorial encoding of MHC
multimer screening flow cytometry assays, or functional
read outs such as cytokine production, will provide an in-
dication of T cell reactivity to validate the tumor-specific
immunogenic neoepitopes. The analyses of mutations in
MHC class I and II genes as well as key molecules affect-
ing antigen processing and presentation are vital to pro-
vide a better assessment of their potential impact on
cytolytic T cell responses. The genetic landscape, the pool
of neoepitopes and functional tumor rejection measures
of neoantigen-specific T cells (tumor recognition) could
be used to further assess their relevance to clinical
outcome, design therapeutic tumor-specific neoantigen
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(TSNA) vaccination, apply adoptive neoantigen T cell
transfer therapy and to guide more effective immuno-
oncology combination immunotherapy.

Limitations of the approach
One of the major limitations of this approach is in the
early stage computational tools that are used both to
identify tumor-specific mutations and to guide epitope
prediction. Multiple computational tools, such as EBcall,
JointSNVMix, MuTect, SomtaticSniper, Strelka and
VarScan 2, are used to compare tumor samples to nor-
mal tissue at each variant locus to increase the accuracy
of somatic single nucleotide variant (sSNV) calling [3–7].
Because these tools use distinct variant calling algorithms,
there may be variability in the somatic mutations identi-
fied. Thus, more validation studies are necessary to im-
prove the calling tools and standardize their use.
Computer algorithm-guided epitope prediction and the
tandem minigene library approach are used to identify
MHC Class I or II binding neoepitopes recognized by
neoantigen specific CD8+ and CD4+ T cells, respectively
[8–10]. The accuracy of the prediction algorithms mostly
depends upon the binding scores to the MHC complex,
with the Class II prediction tools being much less well-
developed than Class I. Tumors, especially those with mu-
tant and viral antigens, could be sufficiently “foreign” to
be recognized by the immune system. However, current
data has illustrated that autologous T cells did not
recognize the vast majority of neoepitopes. Although the
epitope prediction tools have been shown to have a high

degree of overlap [11–14], it is important to improve the
ability of these tools to differentiate putative neoepitopes
from real immunogenic neoepitopes [15]. This lack of im-
munogenicity could also be due to the tumor’s inability to
activate the immune system because of additional resist-
ance mechanisms, especially tumor microenvironment
factors, rather than the absence of tumor antigens. Be-
cause the activation and cytotoxic signals in individual tu-
mors may reflect the overall status of a neoantigen-specific
tumor response, it will be critical to further evaluate these
functional signatures and to incorporate them into future
optimized pipelines.
Another potential limitation of this technology is that

representative, high-quality tissue samples are needed in
order to produce reliable results. Tumor tissue from
formalin-fixed, paraffin-embedded (FFPE) samples may
be used for whole exome sequencing. However, proper
collection and storage of the tumor tissue is essential to
ensure high quality DNA for deep sequencing. Because
of the heterogeneity of the tumor, it is also essential to
collect representative tissue to avoid any bias. In
addition, mutational profiles may change due to dis-
ease progression or ongoing treatment. Therefore,
assessing the tumor sample closest to the intervention
is best to eliminate the potential variation and in-
crease accuracy. Moreover, although PBMCs are com-
monly used as non-transformed cells, the signal from
even low frequency circulating tumor cells from
whole blood needs to be further validated for poten-
tial contribution to data noise.

Fig. 1 Current potential pipelines of whole exome sequencing for neoantigen discovery and precision oncology. After sample collection, whole
exome sequencing can be performed on both tumor and non-transformed cells from the same patient. Once tumor specific mutations are identified,
RNA-seq can be utilized to determine the level of expression of the mutations. Computational tools and/or a tandem minigene library are used to
identify the neoepitopes, T cell assays to narrow down the true immunogenic neoepitope for efficient assessment and precise prediction and neoantigen
vaccination targets. Neoantigen discovery also provides guidance for adaptive neoantigen T cell transfer therapy and combination immunotherapy
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Types of samples needed and special issues
pertaining to samples
Tissue from the tumor sample and non-transformed
cells are needed for whole exome sequencing. However,
as mentioned above, proper collection and storage of
representative tissue is essential to ensure high-quality
samples for deep sequencing. For downstream assess-
ment of T cell reactivity in functional assays, TILs and
PBMCs are needed and must be viably preserved as a
single-cell suspension.

Level of evidence
This is a novel technology that is still currently under
development. Two pilot preclinical studies in mouse
models first demonstrated that whole exome sequencing
is efficient to identify neoantigen-specific CD8+ T cells
with tumor elimination [16, 17]. Several human clinical
studies highlighted the feasibility and importance of un-
derstanding the immunogenicity of neoantigens and
their potential clinical application in patients treated
with tumor-infiltrating lymphocyte cells [8–10]. The
level of mutational load (or the mutational landscape) as
a potential biomarker was associated with clinical out-
come to immune checkpoint blockade cancer immuno-
therapy in patients with advanced melanoma, non-small
cell lung cancer (NSCLC) and colorectal cancer [18–21].
Patients with highly mutagenized tumors and activated
cytolytic markers are most likely to respond to check-
point blockade treatment [22]. In this study, epitope pre-
diction did not improve clinical outcome prediction
value [23]. However, some patients with a high muta-
tional load do not experience clinical responses, while
some patients with a low mutation profile experience
substantial clinical responses [18, 19]. Assessment of
clinically relevant immunogenic mutation loads along
with active cytolytic signatures before therapy is pivotal
to improve the accuracy of outcome prediction. As the
study was performed in patients with mismatched repair
deficiency tumors [20], more prospective studies must
be performed to determine whether the mutation load
can guide novel therapeutic approaches to selectively en-
hance T cell response to neoantigens in future mono- or
combination therapies.

Abbreviations
DNA: deoxyribonucleic acid; FFPE: formalin-fixed, paraffin-embedded (tissue);
MHC: major histocompatibility complex; NGS: next-generation sequencing;
NSCLC: non-small cell lung cancer; PBMCs: peripheral blood mononuclear
cells; RNA: ribonucleic acid; sSNV: somatic single nucleotide variant;
TILs: tumor infiltrating lymphocytes; TMSA: tumor mutation specific antigen;
TSNA: tumor specific neoantigens.

Competing interests
RC is a full-time employee of Bristol Meyers Squibb. WS is a full-time employee
and stockholder of AstraZeneca. JY is a full-time employee of Merck. The authors
declare that they have no other competing interests.

Authors’ contributions
JY drafted the manuscript; PK, RC and WS helped to revise the manuscript.
All authors read and approved the final manuscript.

Acknowledgments
We sincerely thank Ms. Alissa Fiorentino and Dr. Chelsey Meier from the
Society for Immunotherapy of Cancer (SITC) and the steering committee
members of the SITC Biomarkers Task Force for support, comments and
editorial assistance. In addition, the authors thank Dr. Alexandra E. Snyder
Charen at Memorial Sloan Kettering Cancer Center for providing valuable
comments and editing.

Author details
1Netherlands Cancer Institute, Postbus 902031006 BE Amsterdam,
Netherlands. 2Bristol-Myers Squibb, 3551 Lawrenceville Road, Princeton, NJ
08648, USA. 3AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878,
USA. 4Oncology Clinical Research, Merck Research Laboratories, Rahway
07065NJ, USA.

Received: 23 March 2016 Accepted: 23 March 2016

References
1. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy.

Science. 2015;348(6230):69–74. doi:10.1126/science.aaa4971.
2. Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, et al. Novel

technologies and emerging biomarkers for personalized cancer immunotherapy.
J Immunother Cancer. 2016;4:3. doi:10.1186/s40425-016-0107-3.

3. Wang Q, Jia P, Li F, Chen H, Ji H, Hucks D, et al. Detecting somatic point
mutations in cancer genome sequencing data: a comparison of mutation
callers. Genome Med. 2013;5(10):91. doi:10.1186/gm495.

4. Bao R, Huang L, Andrade J, Tan W, Kibbe WA, Jiang H, et al. Review of
current methods, applications, and data management for the bioinformatics
analysis of whole exome sequencing. Cancer Inform. 2014;13 Suppl 2:67–82.
doi:10.4137/CIN.S13779.

5. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A,
et al. Mutational heterogeneity in cancer and the search for new cancer-
associated genes. Nature. 2013;499(7457):214–8. doi:10.1038/nature12213.

6. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al.
Sensitive detection of somatic point mutations in impure and
heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213–9. doi:10.
1038/nbt.2514.

7. Xu H, DiCarlo J, Satya RV, Peng Q, Wang Y. Comparison of somatic mutation
calling methods in amplicon and whole exome sequence data. BMC
Genomics. 2014;15:244. doi:10.1186/1471-2164-15-244.

8. Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, et al. Mining exomic
sequencing data to identify mutated antigens recognized by adoptively
transferred tumor-reactive T cells. Nat Med. 2013;19(6):747–52. doi:10.1038/nm.3161.

9. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, et al. Cancer
immunotherapy based on mutation-specific CD4+ T cells in a patient
with epithelial cancer. Science. 2014;344(6184):641–5. doi:10.1126/
science.1251102.

10. Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R, Calis JJ,
et al. High-throughput epitope discovery reveals frequent recognition
of neo-antigens by CD4+ T cells in human melanoma. Nat Med. 2015;
21(1):81–5. doi:10.1038/nm.3773.

11. Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP, et al.
Genomic and bioinformatic profiling of mutational neoepitopes reveals
new rules to predict anticancer immunogenicity. J Exp Med. 2014;
211(11):2231–48. doi:10.1084/jem.20141308.

12. Fritsch EF, Rajasagi M, Ott PA, Brusic V, Hacohen N, Wu CJ. HLA-binding
properties of tumor neoepitopes in humans. Cancer Immunol Res. 2014;2(6):
522–9. doi:10.1158/2326-6066.CIR-13-0227.

13. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S,
et al. Predicting immunogenic tumour mutations by combining mass
spectrometry and exome sequencing. Nature. 2014;515(7528):572–6. doi:10.
1038/nature14001.

14. Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J,
et al. Mutant MHC class II epitopes drive therapeutic immune responses to
cancer. Nature. 2015;520(7549):692–6. doi:10.1038/nature14426.

Kvistborg et al. Journal for ImmunoTherapy of Cancer  (2016) 4:22 Page 3 of 4

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://jitc.bm

j.com
/

J Im
m

unother C
ancer: first published as 10.1186/s40425-016-0126-0 on 19 A

pril 2016. D
ow

nloaded from
 

http://dx.doi.org/10.1126/science.aaa4971
http://dx.doi.org/10.1186/s40425-016-0107-3
http://dx.doi.org/10.1186/gm495
http://dx.doi.org/10.4137/CIN.S13779
http://dx.doi.org/10.1038/nature12213
http://dx.doi.org/10.1038/nbt.2514
http://dx.doi.org/10.1038/nbt.2514
http://dx.doi.org/10.1186/1471-2164-15-244
http://dx.doi.org/10.1038/nm.3161
http://dx.doi.org/10.1126/science.1251102
http://dx.doi.org/10.1126/science.1251102
http://dx.doi.org/10.1038/nm.3773
http://dx.doi.org/10.1084/jem.20141308
http://dx.doi.org/10.1158/2326-6066.CIR-13-0227
http://dx.doi.org/10.1038/nature14001
http://dx.doi.org/10.1038/nature14001
http://dx.doi.org/10.1038/nature14426
http://jitc.bmj.com/


15. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al.
Checkpoint blockade cancer immunotherapy targets tumour-specific
mutant antigens. Nature. 2014;515(7528):577–81. doi:10.1038/nature13988.

16. Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ,
et al. Cancer exome analysis reveals a T-cell-dependent mechanism of
cancer immunoediting. Nature. 2012;482(7385):400–4. doi:10.1038/
nature10755.

17. Castle JC, Kreiter S, Diekmann J, Lower M, van de Roemer N, de Graaf J,
et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 2012;
72(5):1081–91. doi:10.1158/0008-5472.CAN-11-3722.

18. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al.
Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl
J Med. 2014;371(23):2189–99. doi:10.1056/NEJMoa1406498.

19. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ et al.
Mutational landscape determines sensitivity to PD-1 blockade in non-small
cell lung cancer. Science. 2015. doi: 10.1126/science.aaa1348.

20. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1
blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;
372(26):2509–20. doi:10.1056/NEJMoa1500596.

21. van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B,
et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in
an ipilimumab-responsive melanoma. J Clin Oncol. 2013;31(32):e439–42.
doi:10.1200/jco.2012.47.7521.

22. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L et al.
Genomic correlates of response to CTLA4 blockade in metastatic
melanoma. Science. 2015. doi:10.1126/science.aad0095.

23. Gubin MM, Schreiber RD. CANCER. The odds of immunotherapy success.
Science. 2015;350(6257):158–9. doi:10.1126/science.aad4140.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Kvistborg et al. Journal for ImmunoTherapy of Cancer  (2016) 4:22 Page 4 of 4

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://jitc.bm

j.com
/

J Im
m

unother C
ancer: first published as 10.1186/s40425-016-0126-0 on 19 A

pril 2016. D
ow

nloaded from
 

http://dx.doi.org/10.1038/nature13988
http://dx.doi.org/10.1038/nature10755
http://dx.doi.org/10.1038/nature10755
http://dx.doi.org/10.1158/0008-5472.CAN-11-3722
http://dx.doi.org/10.1056/NEJMoa1406498
http://dx.doi.org/10.1126/science.aaa1348
http://dx.doi.org/10.1056/NEJMoa1500596
http://dx.doi.org/10.1200/jco.2012.47.7521
http://dx.doi.org/10.1126/science.aad0095
http://dx.doi.org/10.1126/science.aad4140
http://jitc.bmj.com/

	Description of the technology
	Type of data obtained/readout
	Limitations of the approach
	Types of samples needed and special issues pertaining to samples
	Level of evidence
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References



