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Abstract

Background: The cancer-associated fibroblast (CAF) population is implicated in immune dysregulation. Here, we
test the hypothesis that CAF profiles in pretreatment tumor specimens are associated with response to immune
checkpoint blockade of programmed cell death 1 (PD-1).

Methods: Pretreatment whole tissue sections from 117 melanoma patients treated with anti-PD-1 therapy were
assessed by multiplex immunofluorescence to detect CAFs defined by Thy1, smooth muscle actin (SMA), and fibroblast
activation protein (FAP). Two independent image analysis technologies were used: inForm software (PerkinElmer) to
quantify cell counts, and AQUA™ to measure protein by quantitative immunofluorescence (QIF). CAF parameters by
both methodologies were assessed for association with previously measured immune markers (CD3, CD4, CD8, CD20,
CD68, PD-L1), best overall response, progression-free survival (PFS), and overall survival (OS).

Results: CAF parameters, by cell counts or QIF, did not correlate with immune markers nor with best overall response.
However, both Thy1 and FAP cell counts had significant positive associations with PFS (all P < 0.05) and OS (all
P < 0.003). SMA cell counts showed negative associations with outcome in anti-PD-1 treated patients. Similar
associations were not observed in a control cohort of historical melanoma patients predating immunotherapy.
Instead, FAP was a negative prognostic biomarker (P = 0.01) in the absence of immunotherapy. Multivariable analyses
revealed significant PFS and OS associations with the CAF parameters were independent of baseline variables.

Conclusions: Pretreatment CAF profiles are associated with melanoma immunotherapy outcome. Multiplex CAF
analysis has potential as an objective companion diagnostic in immuno-oncology.
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Introduction
Immune checkpoint blockade has become a new stand-
ard in melanoma immunotherapy and the overall sur-
vival of patients with metastatic disease has improved
from ~ 9months before 2011 to greater than 3 years
[1–3]. The tumor-infiltrating lymphocyte (TIL) popu-
lation expresses immune checkpoints, programmed
cell death 1 (PD-1), which is targeted by pembrolizumab
and nivolumab; and cytotoxic T-lymphocyte associated

protein 4 (CTLA-4), which is targeted by ipilimumab [4].
Nevertheless, clinical benefit is limited to ~ 40% of meta-
static melanoma patients treated with anti-PD-1 therapy,
which is compounded by the lack of approved predictive
strategies [1, 5]. Due to widespread use of PD-1 blockade
and its recent introduction into the adjuvant setting [6],
there is an increasing need for robust biomarkers to in-
form the practice of precision immuno-oncology [7].
The cancer-associated fibroblast (CAF) population en-

gages in a complex and poorly understood interplay with
tumor cells and immune cells, and are the predominant
stromal cell type within the tumor microenvironment.
CAFs are characterized by expression of Thy1, with sub-
sets expressing smooth muscle actin (SMA) or fibroblast
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activation protein (FAP) [8, 9]. Thy1 is a glycophosphati-
dylinositol (GPI)-anchored cell surface protein that binds
to integrins and may be involved in cell–cell adhesion
[10]. SMA is a major component of the contractile ap-
paratus that allows fibroblasts to produce contractile
force [11]. FAP is a type II transmembrane serine prote-
ase that cleaves collagen I as an endopeptidase and en-
gages in post-translational modification of neuropeptide
Y as a dipeptidyl peptidase, which is the rare ability to
hydrolyze the post-proline bond two residues from the
N-terminus of substrates [12]. FAP is weakly expressed
or not detected in normal adult tissues but is upregu-
lated at sites of activated stroma in tumors and in
chronic inflammation [13]. Emerging preclinical evidence
implicates CAFs in immune dysregulation and response
to immunotherapy [14–16]. However, CAFs represent a
heterogeneous group and different CAF subsets may have
opposing functions. A more comprehensive understand-
ing of different CAF subsets as well as their impact on hu-
man immunotherapy outcome is needed.
We hypothesized that pretreatment CAF profiles of

patient tumors would be associated with immunotherapy
outcome. However, predictive biomarkers strictly require
statistical evidence from a formal test for interaction in
randomized placebo-controlled studies, which are no
longer ethically possible for melanoma. Therefore, we
tested a control cohort of historical melanoma patients
predating immunotherapy instead to distinguish prog-
nostic value and show a specific association between the
biomarker and treatment outcome. We describe this
type of biomarker as “indicative”, a separate category
from truly predictive biomarkers under existing statis-
tical definitions [17]. Briefly, indicative value is demon-
strated when: [1] the hazard ratio is statistically
significant in the treatment cohort and is not significant
in the control cohort; or [2] the hazard ratio is statisti-
cally significant in both the treatment and control co-
horts, but the respective 95% confidence intervals do not
significantly overlap. The former characteristic is purely
indicative, and the latter is both prognostic and indica-
tive [17].
Here, we assess the clinical significance of CAFs for

the prediction of immunotherapy outcome in metastatic
melanoma. We hypothesize that the expression of these
candidate biomarkers, Thy1, SMA, and FAP, will classify
anti-PD-1 therapy treated patients into groups that
benefit and those that do not.

Methods
Patient cohort
The study cohort is a retrospective collection of 117
melanoma patients treated with anti-PD-1 therapy in the
metastatic setting between 2011 and 2017 at Yale Cancer
Center. Uveal melanoma was excluded [18]. The analysis

only included pretreatment formalin-fixed, paraffin-
embedded (FFPE) specimens after review by a board-
certified pathologist. All specimens were collected from
the Yale Pathology archives. Clinicopathological data
were collected from clinical records and pathology re-
ports; the data cut-off date was September 1, 2017. Re-
sponse Evaluation Criteria in Solid Tumors (RECIST)
1.1 were used to determine best overall response as
complete response (CR), partial response (PR), stable
disease (SD), or progressive disease (PD), and objective
response rate (ORR; CR/PR) and disease control rate
(DCR; CR/PR/SD) [19]. A historical cohort of 194 mel-
anoma patients, collected prior to the advent of anti-PD-
1, was used as the control group. Cohort characteristics
are detailed in Table 1. Other characteristics of the anti-
PD-1 treated cohort including the melanoma specimen,
time interval to anti-PD-1 therapy, and prior immune
checkpoint blockade are shown in Additional file 1:
Table S1. All patients provided written informed consent
or waiver of consent. The study was approved by the Yale
Human Investigation Committee protocol #9505008219
and conducted in accordance with the Declaration of
Helsinki.

Multiplex immunofluorescence CAF panel
5-plex immunofluorescence using isotype-specific anti-
bodies was performed on FFPE whole tissue sections for
simultaneous detection of markers as previously described
[20]. The protocol is detailed in the Additional file 1.

Image analysis by two independent methods: cell counts
versus quantitative immunofluorescence
Cell counts were determined by the pattern recognition
software, inForm Tissue Finder (PerkinElmer, Waltham,
MA, USA), on multispectral images acquired using a
Vectra 3 system (PerkinElmer) as previously described
[21]. Multispectral images were decomposed into their
various components by spectral unmixing using a digital
spectral library consisting of spectral profiles of each of
the fluorophores. Automated tissue segmentation identi-
fied tumor and stroma regions. Cell segmentation within
these regions identified individual cells and respective
nuclei, cytoplasm, and membrane components using sig-
nal in the nucleus and membrane as internal and exter-
nal cell borders, then cells were phenotyped for marker
expression. Cell counts for each melanoma case were
calculated in terms of the number of cells positive for
the marker of interest as a percentage of the cell popula-
tion in which it was measured. Protein expression of the
various markers was determined by the automated quan-
titative analysis (AQUA) method of QIF on fluorescence
images acquired using a PM-2000 system (Navigate
BioPharma, Carlsbad, CA, USA) as previously described
[22]. A total compartment, consisting of all cells, or a
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Thy1 compartment was generated by automated process-
ing and thresholding of the DAPI signal or Thy1 signal,
respectively. QIF scores were calculated by dividing the
summed pixel intensities for the marker of interest by the
area of the compartment in which it was measured [22].
Overall QIF scores were derived for each melanoma case
by averaging scores from each field of view.

Statistical analysis
Statistical comparisons for cell count and QIF data were
made using unpaired t-test or analysis of variance
(ANOVA) followed by Tukey’s test for multiple compari-
sons as appropriate. The Lausen and Schumacher
method of maximally selected rank statistics, a powerful
nonparametric method for assessing predictive power of
a continuous variable for a dependent variable, was used
to determine thresholds to objectively define low and
high statuses for the measured CAF parameters [23].
Kaplan–Meier estimates of progression-free survival

(PFS) and overall survival (OS) functions were computed
and comparisons were made by the log-rank test. Multi-
variable Cox proportional hazards models included age,
sex, mutation status, stage, treatment, and prior immune
checkpoint blockade as covariates [24–27]. All statistical
tests were two-sided and statistical significance was de-
fined as P < 0.05. Statistical analysis was performed using
GraphPad Prism 7 (GraphPad Software, La Jolla, CA,
USA) and JMP Pro 13 (SAS Institute, Cary, NC, USA).
The sample size of 117 patients had at least 80% power
at P = 0.05 to detect a difference in means of 0.52 stand-
ard deviations in each CAF parameter for responders
(CR/PR) versus non-responders (SD/PD).

Results
Correlation between cell counts and quantitative
immunofluorescence
Tissue biomarkers can be quantified in situ by counting
positive cells for the biomarker or in terms of quantitative

Table 1 Clinicopathological characteristics of the melanoma cohort treated with anti-PD-1 therapy and the control melanoma
cohort for CAF profiling

Characteristic Anti-PD-1 patients, No. (%) Objective response
rate (CR/PR), No. (%)

Disease control rate
(CR/PR/SD), No. (%)

Control patients, No. (%)

Overall 117 (100) 55 (47) 81 (69) 194 (100)

Age (y)

< 65 67 (57) 34 (51) 51 (76) 87 (45)

≥ 65 50 (43) 21 (42) 30 (60) 107 (55)

Sex

Male 70 (60) 35 (50) 48 (69) 110 (57)

Female 47 (40) 20 (43) 33 (70) 84 (43)

Treatment

Pembrolizumab 41 (35) 20 (49) 30 (73) 0

Nivolumab 18 (15) 7 (39) 9 (50) 0

Ipilimumab plus nivolumab 58 (50) 28 (48) 42 (72) 0

Prior immune checkpoint blockade

Yes 36 (31) 13 (36) 22 (61) 0

No 81 (69) 42 (52) 59 (73) 194 (100)

Mutation status

BRAF 39 (33) 19 (49) 27 (69) NA

NRAS 18 (15) 8 (44) 11 (61) NA

KIT 2 (2) 1 (50) 2 (100) NA

None detected 58 (50) 27 (47) 41 (71) NA

Stage at diagnosis

I 24 (21) 14 (58) 19 (79) 77 (40)

II 23 (20) 12 (52) 16 (70) 80 (41)

III 38 (32) 16 (42) 24 (63) 30 (15)

IV 20 (17) 6 (30) 13 (65) 3 (2)

Not available 12 (10) 7 (58) 9 (75) 4 (2)

Abbreviations: CAF cancer-associated fibroblast, CR complete response, NA not available, PR partial response, SD stable disease
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protein expression levels per unit area. These are two in-
dependent types of parameters and may be nonequivalent
in clinical significance. The relationship between cell
counts and QIF was assessed by linear regression, which
revealed a positive correlation for Thy1 (R2 = 0.35), SMA
(R2 = 0.36), and FAP (R2 = 0.62) (Additional file 1:
Figure S1A). On the contrary, there was no correlation be-
tween different markers, which confirmed their independ-
ence (Additional file 1: Figure S1B).

Immune markers and CAF parameters
Pretreatment whole tissue sections from 117 melanoma
patients treated with anti-PD-1 therapy underwent CAF
(Thy1, SMA, FAP) profiling by multiplex immunofluor-
escence (Fig. 1). The relationship between CAFs and in-
filtration of immune cell populations or expression of
immune markers in melanoma was assessed by linear
regression with previous data [17]. There was no cor-
relation between the CAF parameters and CD3, CD4,
CD8, CD20, CD68, or PD-L1, which confirmed their
independence of those immune markers (Fig. 2 and
Additional file 1: Figure S2).

Best overall response by RECIST and CAF parameters
The CAF parameters, by cell counts or QIF, were ana-
lyzed in relation to specimen-specific variables and
tumor burden classifications defined by RECIST 1.1
[19]. There were no significant associations with sex or
mutation status of melanoma patients for the CAF pa-
rameters by cell counts or QIF (all P > 0.05; Additional
file 1: Figure S3). Neither Thy1, SMA, nor FAP cell
counts were associated with best overall response defined by
RECIST (all P > 0.05; Additional file 1: Figure S4A). The cor-
responding QIF data (Additional file 1: Figure S4B) and fur-
ther analyses on ORR and DCR (Additional file 1: Figure S5)
corroborated these findings and revealed a similar
lack of association with RECIST.

Survival outcome and CAF parameters
For survival analysis, the continuous CAF parameters
were dichotomized into low and high statuses using the
Lausen and Schumacher method of maximally selected
rank statistics for the standardized derivation of objective
thresholds from the population data (Additional file 1:
Figure S6) [23]. In Cox regressions, both high Thy1 cell
count and high FAP cell count were associated with pro-
longed PFS, whereas low SMA cell count was associated
with prolonged PFS (Fig. 3a and Table 2). Similarly, OS
had significant positive associations with both Thy1 and
FAP cell counts, and a negative association with SMA cell
count, which were specific to anti-PD-1 treated melanoma
patients (all P < 0.003; Fig. 3a and Table 3). To determine
this distinction, a control melanoma cohort predating im-
munotherapy with known survival outcome was assessed

for prognostic value in place of a placebo arm. Simi-
lar associations were not observed in the control pa-
tients (Fig. 3b and Table 3). Remarkably, FAP cell count
was a significant negative prognostic biomarker in the ab-
sence of immunotherapy (P = 0.01) with an inverted haz-
ard ratio (HR = 0.57, 95% CI, 0.37–0.88) relative to that of
the anti-PD-1 patients (HR = 4.11, 95% CI, 2.05–9.14)
(Table 3). Multivariable analyses further revealed signifi-
cant survival associations with the CAF parameters, par-
ticularly for FAP, independent of age, sex, mutation, stage,
treatment, and prior immune checkpoint blockade
(Tables 2–3). The QIF data showed similar trends in
relation to survival (Additional file 1: Figure S7 and
Additional file 1: Tables S2–S3). Survival analysis by
treatment group generally showed similar trends despite
the reduction in statistical power (Additional file 1:
Tables S4–S5).

Discussion
In this study, we determine the clinical significance of
pretreatment CAF (Thy1, SMA, FAP) profiles according
to both in situ cell counts and QIF protein expression in
relation to immunotherapy outcome in metastatic mel-
anoma. PFS and OS had positive associations with Thy1
and FAP cell counts, and negative associations with
SMA cell count, which were specific to anti-PD-1
treated patients. Significant PFS and OS associations
with the CAF parameters were independent of age, sex,
mutation, stage, treatment, and prior immune check-
point blockade [24–27]. While the two quantitative
methods are independent, cell counts correlated with
QIF and revealed concordant associations with response
and survival outcome.
This study attempts to rigorously investigate multiplex

CAF profiling and melanoma immunotherapy outcome,
however, there are a number of limitations. The most
significant limitation is the fact that predictive bio-
markers strictly require statistical proof by a test for
interaction in a randomized placebo-controlled trial,
which is no longer ethically possible for melanoma after
the approval of immune checkpoint therapy. Conse-
quently, all post-trial predictive biomarker studies are
limited by the same statistical requirement. Instead, we
analyzed an anti-PD-1 treated melanoma cohort and a
historical cohort predating immunotherapy to show a
specific association between the biomarker and treat-
ment outcome. Indicative value is inferred if the bio-
marker is associated with outcome in the treated cohort
but a similar association is not observed in the control
cohort. This is best demonstrated in Fig. 3 and Table 3,
where the OS association with FAP undergoes a striking
inversion as a function of presence or absence of anti-
PD-1 therapy. Therefore, FAP has indicative value and
may have future potential in a clinical assay to determine
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likelihood of survival benefit from anti-PD-1 therapy for
melanoma. Another limitation is the fact that this is a
single-institutional retrospective study with a modest
sample size, even though all available relevant cases at
Yale were collected at the time of the study. We look
forward to prospective investigation of these assays or
similar in future clinical trials, especially since PD-1
blockade is now widely used in the adjuvant setting
where benefit is seen in only 1 in 5 treated melanoma

patients [6]. Although our CAF profiling methodologies
used quantitative fluorescence imaging systems for in-
creased accuracy, the concept and design may be adapted
for implementation on conventional pathology platforms
(for example, see Hartman et al. [28]).
Recent studies indicate that mesenchymal or stromal

abundance influences immunotherapy outcome [29, 30].
However, the stromal compartment is heterogeneous
and different CAF subsets may have divergent effects. In
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Fig. 1 Cancer-associated fibroblast profiling by multiplex immunofluorescence in melanoma. Representative multispectral immunofluorescence
images of CAF (Thy1, SMA, FAP) profiling in melanoma (magnification × 200; scale bar = 100 μm) (a), and corresponding visualizations of each
CAF marker with nuclei (DAPI) and melanoma cells (S100 and HMB45) for the regions indicated (b). Abbreviations: CAF, cancer-associated fibroblast;
DAPI, 4′,6-diamidino-2-phenylindole; HI, high; LO, low
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the present study, the CAF population was stratified in
terms of their expression of Thy1, SMA, and FAP. The
differences in survival associations for SMA and FAP
may reflect the functional complexity of CAF subsets.
According to a single-cell RNA sequencing study, up to
seven CAF subsets with unique expression phenotypes
may exist in non-small cell lung cancer [9]. The identifi-
cation of specific CAF subpopulations provides a foun-
dation for future studies to deconvolute their specialized

activities, which may inform the design of new diagnos-
tic and therapeutic strategies.
The intriguing role of FAP as a negative prognostic

and positive indicative biomarker in melanoma is dem-
onstrated by its positive association with survival out-
come of anti-PD-1 treated melanoma patients, and its
inverse association with prognosis in the absence of im-
munotherapy. This is reminiscent of the well-known be-
havior of HER2 as a negative prognostic and positive
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Fig. 2 Immune markers and CAF parameters by cell counts in melanoma. Relationships between CAF (Thy1, SMA, FAP) markers and CD3 (a), CD4
(b), CD8 (c), CD20 (d), CD68 (e) and PD-L1 (f) in melanoma. Abbreviations: AU, arbitrary units; CAF, cancer-associated fibroblast; QIF,
quantitative immunofluorescence
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predictive biomarker in breast cancer. Whereas HER2 is
the therapeutic target in the case of breast cancer, the
role of FAP in immunotherapy is not well understood.
The specific association of FAP with anti-PD-1 survival
advantage suggests mechanistic involvement. Recent
supporting evidence has been published showing direct
interactions between CAFs and T cells, mediated
through coincident upregulation and engagement of PD-
1 on T cells, to drive T cell dysfunction and death within

tumors [31]. This CAF-mediated mechanism may ex-
plain the observed associations with survival benefit in
anti-PD-1 therapy, and poor prognosis in the absence of
immunotherapy. Furthermore, our data demonstrate that
these biomarkers are associated with survival outcome but
not RECIST-based response, which are different clinical
endpoints. Multivariable analyses provided unique insights
including the non-redundant role of FAP in the observed
outcome associations when Thy1 and/or SMA are also
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Fig. 3 CAF parameters by cell counts and survival of melanoma patients treated with anti-PD-1 therapy and control melanoma patients. Kaplan–Meier
analysis of progression-free survival and overall survival of anti-PD-1 treated melanoma patients (a) and overall survival of control melanoma patients
(b) according to CAF (Thy1, SMA, FAP) parameters by cell counts. Low and high statuses were objectively defined using thresholds determined
by maximally selected rank statistics (see Methods). Abbreviations: CAF, cancer-associated fibroblast; HI, high; LO, low
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included in the Cox models. Melanoma mutation status
was not associated with any CAF parameter [32]. The
CAF parameters also did not correlate with immune
markers, which indicates independence of those meas-
urement variables and non-redundancy, and may there-
fore be complementary to existing biomarkers such as
CD8 and PD-L1 [33, 34]. A combination biomarker strat-
egy is being studied to determine if combinations of CAF
parameters with immune cell parameters have stronger
associations with immunotherapy outcome. A predictive
signature classifier computed from all available tissue data
is also under consideration.
The use of two independent image analysis tech-

nologies to assess biomarkers and the concordant
results from cell counts and QIF adds confidence in
the findings. The AQUA method of QIF measures
protein expression as cumulative signal intensity per
unit compartment area, and it has been shown to be
proportional to analyte concentration [35]. This is
fundamentally different from counts of digitally phe-
notyped cells [36]. The similar results of the two
methodologies suggest shared biological relevance.
However, cell counts use intuitive absolute units
and exhibited stronger associations with survival
outcome than QIF, therefore, it may have a greater
potential for clinical translation in digital precision
immuno-oncology.
In summary, this study demonstrates that pretreat-

ment CAF profiles, by in situ cell counts or QIF
protein expression, are independently associated with

melanoma immunotherapy outcome. The finding that
FAP is a negative prognostic but positive indicative
biomarker suggests mechanistic involvement and war-
rants further study. Multiplex CAF profiling has the
potential for application as a companion diagnostic in
digital precision immuno-oncology and may be com-
plementary to existing immune-related markers for
patient stratification.

Conclusions
This study examines the clinical significance of
cancer-associated fibroblast (Thy1, SMA, FAP) pro-
files in pretreatment tumor specimens to determine
their association with immunotherapy outcome in
melanoma. We find that FAP, by both digital cell
counts and quantitative immunofluorescence of pro-
tein expression, shows significant positive associa-
tions with survival outcome. The positive association
is independent of baseline variables in multivariable
analyses. In contrast, FAP is inversely associated with
prognosis in the absence of immunotherapy in a his-
torical cohort. The novel discovery that FAP is a
negative prognostic and positive indicative biomarker
in melanoma suggests mechanistic involvement in
anti-PD-1 survival advantage. Its independence from
previously described biomarkers like CD8 and PD-L1
suggest it could have value in combination with
those markers to more accurately predict outcome to
immunotherapy.

Table 2 Univariable and multivariable Cox regression analyses for progression-free survival of melanoma patients and CAF parameters
by cell counts

Variable
(LO/HI)

Anti-PD-1 PFS

Univariable analysis Multivariablea analysis per variable Multivariablea analysis with Thy1, SMA, FAP

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Thy1+/total 2.18 (1.17–3.81) 0.016 2.34 (1.21–4.28) 0.013 1.90 (0.98–3.48) 0.058

SMA+/Thy1+ 0.55 (0.32–0.97) 0.038 0.55 (0.32–0.99) 0.048 0.71 (0.40–1.31) 0.26

FAP+/Thy1+ 1.77 (1.11–2.89) 0.017 2.08 (1.28–3.44) 0.0030 1.79 (1.06–3.04) 0.031

Abbreviations: CAF cancer-associated fibroblast, CI confidence interval, HI high, HR hazard ratio, LO low, PFS progression-free survival
aCox proportional hazards model included age, sex, mutation status, stage, treatment, and prior immune checkpoint blockade as covariates

Table 3 Univariable and multivariable Cox regression analyses for overall survival of melanoma patients and CAF parameters by cell counts

Variable
(LO/HI)

Control OS Anti-PD-1 OS

Univariable analysis Univariable analysis Multivariablea analysis per variable Multivariablea analysis with Thy1, SMA, FAP

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Thy1+/total 1.65 (0.87–2.88) 0.12 4.66 (2.34–8.82) < 0.0001 4.67 (2.19–9.53) 0.0001 3.02 (1.44–6.10) 0.0044

SMA+/Thy1+ 0.45 (0.22–1.07) 0.070 0.34 (0.18–0.68) 0.0029 0.32 (0.16–0.67) 0.0027 0.62 (0.30–1.31) 0.20

FAP+/Thy1+ 0.57 (0.37–0.88) 0.012 4.11 (2.05–9.14) < 0.0001 4.64 (2.27–10.52) < 0.0001 3.61 (1.65–8.56) 0.0011

Abbreviations: CAF cancer-associated fibroblast, CI confidence interval, HI high, HR hazard ratio, LO low, OS overall survival
aCox proportional hazards model included age, sex, mutation status, stage, treatment, and prior immune checkpoint blockade as covariates
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Additional file

Additional file 1: Supplementary Figure 1. Linear regressions of CAF
parameters in melanoma by cell counts and quantitative
immunofluorescence. Correlation between cell counts and QIF scores for
CAF (Thy1, SMA, FAP) markers (A). Relationships between Thy1, SMA, and
FAP by cell counts and QIF (B). Abbreviations: AU, arbitrary units; CAF,
cancerassociated fibroblast; QIF, quantitative immunofluorescence. (PDF
439 kb)
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