Article Text
Abstract
Background Immune checkpoint blockade (ICB) with antibodies against PD-1 or PD-L1 may provide therapeutic benefits in patients with non-small cell lung cancer (NSCLC). However, most tumours are resistant and cases of disease hyper-progression have also been reported.
Materials and Methods Genetically engineered mouse models of KrasG12Dp53null NSCLC were treated with cisplatin along with antibodies against angiopoietin-2/VEGFA, PD-1 and CSF1R. Tumour growth was monitored by micro-computed tomography and the tumour vasculature and immune cell infiltrates were assessed by immunofluorescence staining and flow cytometry.
Results Combined angiopoietin-2/VEGFA blockade by a bispecific antibody (A2V) modulated the vasculature and abated immunosuppressive macrophages while increasing CD8+effector T cells in the tumours, achieving disease stabilization comparable or superior to cisplatin-based chemotherapy. However, these immunological responses were unexpectedly limited by the addition of a PD-1 antibody, which paradoxically enhanced progression of a fraction of the tumours through a mechanism involving regulatory T cells and macrophages. Elimination of tumour-associated macrophages with a CSF1R-blocking antibody induced NSCLC regression in combination with PD-1 blockade and cisplatin.
Conclusions The immune cell composition of the tumour determines the outcome of PD-1 blockade. In NSCLC, high infiltration of regulatory T cells and immunosuppressive macrophages may account for tumour hyper-progression upon ICB.
Disclosure Information A. Martinez-Usatorre: None. E. Kadioglu: None. C. Cianciaruso: None. B. Torchia: None. J. Faget: None. E. Meylan: None. M. Schmittnaegel: None. I. Keklikoglou: None. M. De Palma: None.