Article Text

Download PDFPDF

245 Human TLR8 knock-in mice potentiate immunotherapy responses of MC38 syngeneic tumors
  1. Shanshan Qi1,
  2. Hongjuan Zhang1,
  3. Ruilin Sun2,
  4. Annie An1,
  5. Henry Li1 and
  6. Davy Ouyang1
  1. 1Crown Bioscience Inc., Taicang, China
  2. 2Shanghai Model Organisms Center Inc., Shanghai, China


Background Toll-like receptors (TLRs) serve critical roles in mediating innate immune responses against many pathogens. However, they may also bind to endogenous ligands and lead to the pathogenesis of autoimmunity. Although TLR8 belongs to the same TLR family as TLR7, its role in inflammation and tumor progression is not yet fully understood due to the lack of suitable animal models. In humans, both TLR7 and TLR8 recognize single-stranded self-RNA, viral RNA, and synthetic small molecule agonists.1, 2 However, mouse Tlr8 is non-functional due to the absence of 5 amino acids necessary for RNA recognition. In order to create a mouse model with functional TLR8, we replaced exon 3 of mouse Tlr8 with human TLR8, therefore developing a hTLR8 knock-in (KI) model. Both heterozygous and homozygous hTLR8 KI mice are viable with inflammatory phenotypes, i.e. enlarged spleens and livers, and significantly higher IL-12 p40 levels under TLR8 agonist treatment. In this study, we evaluated the potential use of hTLR8 mice for cancer immunotherapy studies.

Methods hTLR8 mice, together with naïve C57BL/6 mice, were inoculated with MC38 syngeneic tumor cells. Tumor bearing mice were grouped at a mean tumor volume of approximately 100 mm3 for treatment with PBS or 10 mg/kg anti-PD-1 (RMP1-14) antibody. At the efficacy endpoint, spleens and tumors were collected for flow cytometry profiling.

Results Anti-PD-1 treatment of MC38 tumors in naïve C57BL/6 led to moderate tumor growth inhibition (TGI = 54%). Interestingly, anti-PD-1 treatment showed improved efficacy in hTLR8 mice (TGI = 79%), including 2/10 tumors with complete tumor regression. In comparison, non-treated MC38 tumor growth rate was slower in hTLR8 mice than in naïve mice. Anti-PD-1 treated hTLR8 mice also had significantly increased IFN-γ and TNF-a positive CD4+ T cells in the spleen, along with higher numbers of differentiated effector T cells. In addition, hTLR8 mice have activated dendritic cells and macrophages, acting as critical steps in initiation of the inflammatory process, with higher levels of pro-inflammatory cytokines, such as IL-6, IFN-γ, TNF-a, and IL-1β, which may promote Th1 priming and differentiation of T cells into IFN-γ or TNF-a producing cells.

Conclusions hTLR8 mice offer a great tool to model cancer immunotherapy in an inflammatory/autoimmunity prone background. Moreover, hTLR8 mice can be effectively used to shift a ‘cold’ tumor phenotype to ‘hot’ tumors in a syngeneic setting.

Ethics Approval Animal experiments were conducted in accordance with animal welfare law, approved by local authorities, and in accordance with the ethical guidelines of CrownBio (Taicang).


  1. Kugelberg E. Making mice more human the TLR8 way. Nat Rev Immunol 2014;14:6.

  2. Guiducci C, Gong M, Cepika A-M, et al. RNA recognition by human TLR8 can lead to autoimmune inflammation. J Exp Med 2013;210:2903–2919.

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See:

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.