Article Text

Download PDFPDF

253 Anti-TIGIT antibodies require enhanced FcγR co-engagement for optimal T and NK cell-dependent anti-tumor immunity
  1. Rebecca Ward1,
  2. Elena Paltrinieri2,
  3. Marilyn Marques1,
  4. Priyadarshini Iyer1,
  5. Sylvia Dietrich3,
  6. Jeremy Waight4,
  7. Mark Bushell1,
  8. Nicholas Wilson5,
  9. Jennifer Buell1,
  10. David Savitsky1 and
  11. Dhan Chand1
  1. 1Agenus Inc, Lexington, MA, USA
  2. 2Pyxis Oncology, Cambridge, MA, USA
  3. 3Dragonfly Therapeutics Inc, Waltham, MA, USA
  4. 4GlaxoSmithKline, King of Prussia, Pennsylvania, USA
  5. 5Gilead Sciences, San Carlos, CA, USA

Abstract

Background T-cell immunoreceptor with Ig and ITIM domains (TIGIT) is an important negative regulator of the immune response to cancer that contributes to resistance/relapse to anti-PD-1 therapy.1 In clinical trials, anti-human (h) TIGIT antibodies have shown promising activity in combination with anti-PD-1/PD-L1 antibodies for the treatment of various solid tumors.2 However, the optimal format for anti-TIGIT antibodies remains controversial. Here we describe a novel Fcγ receptor (FcγR)-dependent mechanism of action that is critical for enhancing T and NK cell anti-tumor immunity, and, further informs on the optimal design of anti-TIGIT antibodies.

Methods We investigated a panel of Fc-silent, Fc-competent, and Fc-engineered anti-mouse (m) TIGIT antibody variants in syngeneic murine CT26 tumor-bearing or B16F10 pseudo-metastases models. To further elucidate the relative contribution of T and NK cells in controlling tumor growth, we assessed the activity of Fc-engineered anti-TIGIT antibodies in NK cell-depleted or T cell-deficient (Nu-Foxn1nu) CT26 tumor-bearing mice. Immune-related pharmacodynamic changes in the tumor microenvironment were assessed by flow cytometry. We further validated these findings in primary human T and NK cell activation assays using Fc-engineered anti-human TIGIT antibodies.

Results The Fc-engineered anti-mTIGIT antibody, which demonstrates enhanced binding to mouse FcγRIV, was the only variant to deliver single agent anti-tumor activity. The Fc-enhanced variant outperformed the Fc-competent variant while the Fc-inert variant had no anti-tumor activity. Tumor control by anti-mTIGIT antibodies was not dependent on Treg depletion, but rather on increased frequency of CD8+ T cells and activated NK cells (Ki67, IFNγ, CD107a and TRAIL) in the tumor microenvironment. Concordant with observations in the mouse, Fc-engineered anti-hTIGIT antibodies with improved binding to FcγRIIIA demonstrate superior T and NK cell activation in PBMC-based assays compared to a standard hIgG1 variant. Notably, superior activity of the Fc-engineered anti-hTIGIT antibody was observed from PBMC donors that express either high or low affinity FcγRIIIA. Blockade of FcγRIIIA or depletion of CD14+ and CD56+ cells reduced the functional activity of the Fc-enhanced anti-TIGIT antibody, confirming the requirement for FcγR co-engagement to maximize T cell responses.

Conclusions Our data demonstrate the importance of FcγR co-engagement by anti-TIGIT antibodies to promote immune activation and tumor control. First generation anti-TIGIT antibodies are not optimally designed to co-engage all FcγRIIIA variants. However, Fc-enhanced anti-TIGIT antibodies unlock a novel FcγR-dependent mechanism of action to enhance T and NK cell-dependent anti-tumor immunity and further improve therapeutic outcomes.

References

  1. Johnston RJ, et al., The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 2014; 26:923–37.

  2. Rodriguez-Abreu D, et al., Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). Journal of Clinical Oncology 2020; 38:15_suppl, 9503–9503.

http://creativecommons.org/licenses/by-nc/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.