Article Text

Download PDFPDF

412 First-in-human phase I/IIa trial to evaluate the safety and initial clinical activity of DuoBody®-PD-L1×4–1BB (GEN1046) in patients with advanced solid tumors
  1. Elena Garralda1,
  2. Ravit Geva2,
  3. Eytan Ben-Ami3,
  4. Corinne Maurice-Dror4,
  5. Emiliano Calvo5,
  6. Patricia LoRusso6,
  7. Özlem Türeci7,
  8. Michelle Niewood8,
  9. Uğur Şahin7,
  10. Maria Jure-Kunkel8,
  11. Ulf Forssmann8,
  12. Tahamtan Ahmadi8 and
  13. Ignacio Melero9
  1. 1Vall d’Hebron University Hospital, Barcelona, Spain
  2. 2Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
  3. 3Chaim Sheba Medical Center, Ramat Gan, Israel
  4. 4Institute of Oncology, Haifa, Israel
  5. 5START Madrid-CIOCC, Madrid, Spain
  6. 6Yale Cancer Center, Yale University, New Haven, CT, USA
  7. 7BioNTech SE, Mainz, Germany
  8. 8Genmab A/S, Princeton, NJ, USA
  9. 9Clinica Universidad de Navarra, Pamplona, Spain

Abstract

Background Agonistic 4-1BB monoclonal antibodies were preclinically validated as promising cancer immunotherapies, both as monotherapy and as potentiators of the activity of PD-(L)1–blocking agents. However, toxicity and a narrow therapeutic window have hampered their clinical development. DuoBody-PD­-L1×4-1BB, a first-in-class, bispecific, next-generation checkpoint immunotherapy, was designed to overcome these limitations by activating T cells through conditional 4-1BB costimulation, while simultaneously blocking the PD-L1 axis. We present preliminary data from the ongoing, first-in-human, open-label, phase I/IIa trial of DuoBody-PD-L1×4-1BB in advanced solid tumors (NCT03917381).

Methods During dose escalation, patients with metastatic or unresectable solid tumors not eligible for standard therapy received flat-dose DuoBody-PD-L1×4-1BB (25–1200 mg) intravenously every 3 weeks until disease progression or unacceptable toxicity. Primary endpoints were dose-limiting toxicities (DLTs) and adverse events (AEs). Secondary endpoints included pharmacokinetic parameters and antitumor activity (RECIST 1.1). Pharmacodynamic biomarkers and antitumor activity (iRECIST) were assessed as exploratory endpoints.

Results As of June 22, 2020, 61 patients were enrolled (median age: 59 years). The most common cancer types were colorectal (19.7%), ovarian (14.8%), pancreatic (9.8%), and NSCLC (9.8%). Patients had previously received a median (range) of 3 (1–11) treatments; 44.2% had prior anti-PD-(L)1 immunotherapy. Patients received a median (range) of 4 (1–15) treatment cycles; Cmax was observed shortly after the end of infusion (mean T½: 2.3–10.3 days). Maximum tolerated dose was not reached; 6 patients experienced DLTs. The most common (=10%) treatment-related AEs (all grades; grades 3–4) were transaminase elevation (24.6%; 9.8%), hypothyroidism (16.4%; 1.6%), and fatigue (13.1%; 1.6%). Treatment-related grade-3 transaminase elevations decreased upon corticosteroid administration; no treatment-related bilirubin increases or grade-4 transaminase elevations occurred. Disease control, including stable disease at first assessment and partial responses in triple-negative breast cancer, ovarian cancer, and immune checkpoint inhibitor (ICI)–pretreated NSCLC, occurred in 40/61 patients (65.6%). Pharmacologic activity, as measured by modulation of adaptive immunity mediators, was observed across a broad range of dose levels. Peripheral proliferating (Ki67+) CD8+ effector memory T cells and serum interferon-gamma levels showed maximum induction relative to baseline (p=0.01) 8 days following treatment.

Conclusions DuoBody-PD-L1×4-1BB demonstrated biologic activity and a manageable safety profile. Encouraging early clinical activity across different dose levels was observed in a heavily pretreated population with advanced solid tumors, including those resistant to prior immunotherapy or typically less sensitive to ICIs. Expansion cohorts of patients for whom DuoBody-PD-L1×4-1BB treatment could be relevant and biologically sound have started enrollment. Updated data will be presented.

Acknowledgements The authors thank Manish Gupta, Lei Pang, and Thomas Breuer at Genmab A/S; Alice Bexon, Alexander Muik, and Friederike Gieseke at BioNTech SE; and Zuzana Jirakova (formerly at BioNTech SE) for their valuable contributions. This trial was funded by Genmab A/S and BioNTech SE.

Trial Registration ClinicalTrials. gov; trial number: NCT03917381

Ethics Approval This trial is undertaken following full approval of the final protocol, amendments, informed consent form, applicable recruiting materials, and subject compensation programs by the Independent Ethics Committee/Institutional Review Board.

Consent Written informed consent, in accordance with principles that originated in the Declaration of Helsinki 2013, current ICH guidelines including ICH-GCP E6(R2), applicable regulatory requirements, and sponsor policy, was provided by the patients.

http://creativecommons.org/licenses/by-nc/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.