Article Text

Download PDFPDF

451 Combining Bempegaldesleukin (CD122-preferential IL-2 pathway agonist) and NKTR-262 (TLR7/8 agonist) pairs local innate activation with systemic CD8+ T cell expansion to enhance anti-tumor immunity
  1. Annah Rolig1,
  2. Daniel Rose1,
  3. Saul Kivimae2,
  4. Werner Rubas2 and
  5. William Redmond1
  1. 1Earle A. Chiles Research Institute, Portland, OR, USA
  2. 2Nektar Therapeutcs, San Francisco, CA, USA


Background Previously, we demonstrated that radiation therapy (RT) combined with Bempegaldesleukin (BEMPEG;NKTR-214), a first-in-class CD122-preferential IL-2 pathway agonist, led to enhanced anti-tumor efficacy through a T cell-dependent mechanism. However, we observed only modest systemic responses to BEMPEG/RT across several murine tumor models. Therefore, we explored alternative approaches to improve systemic tumor-specific immunity. We evaluated whether intratumoral NKTR-262, a polymer-modified toll-like receptor (TLR) 7/8 agonist, combined with systemic BEMPEG treatment resulted in improved tumor-specific immunity and survival compared to BEMPEG combined with RT. We hypothesized that BEMPEG/NKTR-262 immunotherapy would promote synergistic activation of local immunostimulatory innate immune responses followed by systemic adaptive immunity to significantly improve tumor regression and overall survival.

Methods Tumor-bearing mice (CT26; EMT6) received BEMPEG (0.8 mg/kg; iv), RT (12 Gy x 1), and/or intratumoral NKTR-262 (0.5 mg/kg). Flow cytometry was used to evaluate CD4+ and CD8+ T cell activation status in the blood and/or tumor (7 days post-treatment) and NK cell activity in the tumor (1, 3 days post-treatment). The contribution of specific immune subsets was determined by depletion of CD4+, CD8+, or NK cells. CD8+ T cell activity was determined in vitro by tracking apoptosis in an Incucyte assay. Data are representative of 1–2 independent experiments (n=5–14/group) and statistical significance was determined by 1-way ANOVA (p-value cut-off of 0.05).

Results BEMPEG/NKTR-262 resulted in significantly improved survival compared to BEMPEG/RT. BEMPEG/NKTR-262 efficacy was NK and CD8+ T cell-dependent, while BEMPEG/RT primarily relied on CD8+ T cells. Response to BEMPEG/NKTR-262 was characterized by a significant expansion of activated CD8+ T cells (GzmA+; Ki-67+; ICOS+; PD-1+) in the blood, which correlated with reduced tumor size (p<0.05). In the tumor, NKTR-262/BEMPEG induced higher frequencies of GzmA+ CD8+ T cells exhibiting reduced expression of suppressive molecules (PD-1+, TIM-3+), compared to BEMPEG/RT. Indeed, CD8+ T cells isolated from BEMPEG/NKTR-262-treated tumors had greater cytolytic capacity than those from BEMPEG/RT-treated mice. CD8+ T cell expansion (blood) and activity (tumor) depended upon the initial NK response, as neither occurred in the absence of NK cells. BEMPEG/NKTR-262 uniquely induced the expansion of early and high effector NK cells.

Conclusions Combining BEMPEG with NKTR-262 lead to an early and robust NK cell expansion not observed in the BEMPEG/RT combination. The improved tumor regression and survival was dependent on the NKTR-262 driven expansion of NK cells. A clinical trial of BEMPEG/NKTR-262 for patients with metastatic solid tumors is in progress (NCT03435640).

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See:

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.