Article Text
Abstract
Background Immune stimulating antibody conjugates (ISACs) covalently attach TLR7/8 immune stimulants to tumor-targeting antibodies. ISACs can be delivered systemically and act locally in the tumor microenvironment by requiring the following biological steps to elicit immune activation: 1) tumor antigen recognition, 2) Fc receptor mediated phagocytosis by myeloid antigen presenting cells (APCs), and 3) activation of endosomal TLR7 and TLR8. Here, we demonstrate that covalent attachment of our TLR7/8 agonist to tumor-targeting antibodies not only enables the resulting ISACs to be safely administered systemically in preclinical models, but also unexpectedly promotes synergy between the FcgR and TLR pathways that results in amplified anti-tumor immunity in mice and robust immune activation in human leukocytes as compared to the co-administration of the components.
Methods ISAC activity and mechanistic studies were analyzed via flow cytometry, ELISA and CyTOF following in vitro coculture of human leukocytes with tumor cell lines. In vivo efficacy of HER2-targeting ISACs following systemic administration was assessed in a trastuzumab-resistant HER2+ human tumor xenograft model. Safety and tolerability were assessed in tumor-bearing mice and healthy non-human primates (NHP).
Results While co-administration of intratumoral TLR7/8 agonist and intraperitoneal trastuzumab failed to control tumor growth, systemic administration of the same TLR7/8 agonist and trastuzumab in our ISAC format was efficacious and induced complete tumor regression in an Fc- and TLR-dependent manner. Analysis of primary human leukocytes stimulated with ISACs in tumor co-culture assays indicated that ISACs elicit amplified and sustained phosphorylation of Fc and TLR signaling pathways, such as pERK1/2 and pIRF-7, as compared to the unconjugated mixture of the same TLR7/8 agonist and tumor targeted antibody. ISAC stimulation was largely restricted to antigen presenting cells such as dendritic cells and plasmacytoid dendritic cells that express the relevant Fc receptors and TLR7 and/or TLR8. Modifications to the ISAC that reduce FcgR engagement (N297A/Q) or render the agonist inactive halted ISAC-mediated activation and in vivo anti-tumor efficacy. Lastly, our HER2-targeting ISACs were well-tolerated when delivered systemically in mice and NHPs.
Conclusions Our ISACs enable potent TLR agonists to be safely administered systemically in preclinical models. ISACs provide distinct and unexpected advantages over unconjugated TLR agonists, notably by driving synergy between FcgR and TLR pathways, leading to robust myeloid activation and anti-tumor efficacy. These data support the evaluation of BDC-1001, a HER2-targeted ISAC in the ongoing Phase 1/2 trial (NCT04278144).
This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.