Article Text
Abstract
Background Anti-PD-1 therapies have achieved durable clinical responses in a wide range of malignancies, but responses are limited to a small subset of patients. Expression of PD-L1 on tumor cells by immunohistochemistry (IHC) has been applied as a companion diagnostic for anti-PD-1 therapy. However, recent studies have called in to question the reliability of this method to predict response.
Methods Here we developed a novel platform that integrates in vitro pharmacogenomic and functional data with clinical pharmacodynamic responses to immunotherapy using proprietary in silico approaches. The data originate from a long-term co-culture of primary antigen-specific T cells and cancer cells which drives T cells to a terminally dysfunctional, PD-1 refractory state. T cell effector functions and gene expression changes were monitored in the presence or absence of anti-PD-1 antibody or genetic knockouts. RNA expression signatures were refined with a randomized sliding window approach to generate a deep learning neural network for PD-1 response prediction.
Results We defined five T cell states associated with distinct phenotypic and molecular features - naïve, active, effector, transition and dysfunction. Among the genes that were selectively expressed in the dysfunction state, we identified a 96-gene signature that is closely associated with clinical outcomes to anti-PD-1 therapy. In PD-1 treated patients across multiple solid tumor indications, this signature correlates with objective response rate and outperforms traditional metrics such as tumor mutation burden or PD-L1 IHC signal. Moreover, this signature combines with tumor sequencing data to generate a powerful machine-learning model that predicts anti-PD-1 responses in metastatic melanoma patients with significantly higher accuracy than PD-L1 IHC. Having established that the T cell states in our co-culture relate to clinical outcomes, we leveraged the system to investigate the molecular basis for PD-1 responses. Single cell mapping of transition state T cells in the presence of anti-PD-1 revealed an expanded population of T cells that co-expresses PD-1, TIGIT and activation markers. Likewise, PD-L1 knockout on cancer cells identified the TIGIT ligand, CD155, as a potential tumor escape mechanism to anti-PD-1 therapy. Consistent with this, the combination of PD-1 and TIGIT blockade enhanced T cell cytotoxicity of tumor cells relative to monotherapies.
Conclusions Agenus’ T cell dysfunction platform combines deep in vitro profiling and AI-based approaches to predict clinical outcomes. Here, we defined a predictive biomarker signature that outperforms standard PD-L1 IHC. Further, we identified known (TIGIT) and potentially novel combination partners predicted to enhance the durability of anti-PD-1 responses.
Ethics Approval Not Applicable
Consent Not Applicable
This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.