Article Text
Abstract
Background Chimeric antigen receptor (CAR-T) cells are a promising new therapy for patients with cancer. However, in contrast to their success in B cell malignancies, CAR-T cells targeting solid cancers have had limited success so far due to their poor proliferation and poor long-term persistence in vivo. To address this issue, we used naïve T cells to generate second-generation CAR-T cells recognizing the tumor antigen Lewis Y (LeY), termed ‘early’ CAR-T cells.
Methods Purified naïve T cells were activated by CD3/CD28 soluble tetrameric antibody complex, retrovirally transduced (LeY scFv-CD3z-CD28 CAR) and expanded in IL-7/IL-15. The early LeY CAR-T cell function was tested in vitro for cytotoxicity (Cr-release and degranulation), proliferation, and cytokine secretion by CBA, either de novo or following chronic stimulation for 1 month. Finally, early CAR-T cell persistence and anti-tumor efficacy was assessed in the OVCAR3-NSG model, in the presence or absence of anti-PD-1.
Results The early-CAR-T cells comprised stem cell memory-like (CD95+, CD62L+, CD45RA+) and central memory phenotype (CD95+, CD62L+, CD45RA-) T cells with increased expression of ICOS, Ki67, TCF7 and CD27 (Figure 1). The early-CAR-T cells retained potent antigen-specific cytotoxicity, and secreted significantly higher levels of cytokines (IFN-?, TNF-a and IL-2) and increased proliferation compared to conventional CAR-T cells. Importantly, early-CAR-T cells had a significantly higher proliferative capacity after long-term chronic stimulation compared to conventional CAR-T cells (figure 2), and CD4+ CAR-T cells were critical for effective early CD8+ CAR-T cell proliferation capacity in vitro (figure 3). Early CAR-T cells had significantly better in vivo tumor control compared to conventional CAR-T cells (Figure 4), this was associated with increased CAR-T cell persistence. Because chronically stimulated early-LeY-CAR-T cells expressed PD-1 (figure 2), and OVCAR-3 cells expressed PD-L1 when co-cultured with LeY-CAR-T cells (figure 5), we combined early LeY-CAR-T cells with anti-PD-1 therapy and observed complete tumour regression in these mice. Interestingly, early LeY-CAR-T cell plus anti-PD-1 treatment also enhanced the percentage of circulating stem-cell memory like CAR-T cells in vivo (figure 5).
Conclusions Our early CAR-T cells have better cytokine secretion and proliferation than conventional CAR-T cells. Early CAR-T cells also have superior anti-tumor efficacy in vivo, they have better persistence and maintain the circulating T cell memory pool. Importantly, low dose early-LeY-CAR-T cells combined with anti-PD1-treatment leads to complete clearance of LeY+ solid tumors in vivo. The early CAR-T cell production protocol is directly translatable for improving CAR-T cell efficacy in clinical trials for patients with solid tumors.
This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.