Article Text
Abstract
Background Despite the curative potential of immune checkpoint blockade (ICB) therapy, only small subsets of patients achieve tumor regression while many responders relapse and acquire resistance. Monitoring treatment response and detecting the onset of resistance are critical for improving patient prognoses. Here we engineered ICB antibody-sensor conjugates known as ICB-Dx by coupling peptides sensing the activity of granzyme B (GzmB), a T cell cytotoxic protease, directly on αPD1 antibody to monitor therapeutic responses by producing a fluorescent reporter into urine. To develop biomarkers that indicate mechanisms of resistance to ICB, we generated B2m-/- and Jak1-/- tumor models and performed transcriptomic analyses to identify unique protease signatures of these resistance mechanisms. We then built a multiplexed library of αPD1-Dx capable of detecting early therapeutic response and illuminating resistance mechanisms during ICB therapy.
Methods FITC-labeled GzmB substrates were synthesized (CEM) and conjugated to αPD1 antibody. B2m-/- and Jak1-/- tumors were generated from WT MC38 cells using CRISPR/Cas9. For tumor studies, 106 cells were inoculated s.c. in B6 mice. Tumor mice were treated with αPD1 or IgG1 isotype conjugates (0.1 mg), and urine was collected at 3 hours. Tumor RNA was isolated with RNEasy kit (Qiagen) and prepared for sequencing with TruSeq mRNA kit (Illumina).
Results To synthesize αPD1-Dx, we coupled FITC-labeled GzmB substrates to αPD1 antibody (figure 1a). In MC38 tumors, systemic administration of αPD1-Dx lowered tumor burden relative to control treatment while producing significantly elevated urine signals that preceded tumor regression (figure 1b, c). To investigate the ability to monitor tumor resistance to ICB, we developed knockout tumors to model B2m and Jak1 mutations, which are observed in human patients. in vivo, B2m-/- and Jak1-/- MC38 tumors were resistant to αPD1 monotherapy (figure 1d). Tumor RNA sequencing revealed that gene expression was altered during αPD1 treatment only in WT tumors. Importantly, B2m-/- tumors showed very different expression profiles than Jak1-/- tumors during αPD1 treatment, indicative of unique regulation of resistance (figure 1e). We used differential expression analyses to discover unique protease signatures associated with these two resistance mechanisms. Finally, a multiplexed library of αPD1-Dx engineered to monitor both tumor and immune proteases detected early on-treatment responses and stratified B2m-/- from Jak1-/- resistance with high diagnostic validity (figure 1f).
Conclusions We have engineered activity sensors that accurately detect therapeutic responses and stratify resistance mechanisms noninvasively from urine, thereby potentially expanding the precision of ICB therapy to benefit cancer patients.
Ethics Approval All animal studies were approved by Georgia Tech IACUC (A100193)
This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.