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ABSTRACT

Background The host’s immune system develops in
equilibrium with both cellular self-antigens and non-self-
antigens derived from microorganisms which enter the
body during lifetime. In addition, during the years, a tumor
may arise presenting to the immune system an additional
pool of non-self-antigens, namely tumor antigens (tumor-
associated antigens, TAAs; tumor-specific antigens, TSASs).
Methods In the present study, we looked for

homology between published TAAs and non-self-viral-
derived epitopes. Bioinformatics analyses and ex vivo
immunological validations have been performed.

Results Surprisingly, several of such homologies have
been found. Moreover, structural similarities between
paired TAAs and viral peptides as well as comparable
patterns of contact with HLA and T cell receptor (TCR)

o and B chains have been observed. Therefore, the two
classes of non-self-antigens (viral antigens and tumor
antigens) may converge, eliciting cross-reacting CD8*

T cell responses which possibly drive the fate of cancer
development and progression.

Conclusions An established antiviral T cell memory may
turn out to be an anticancer T cell memory, able to control
the growth of a cancer developed during the lifetime if
the expressed TAA is similar to the viral epitope. This may
ultimately represent a relevant selective advantage for
patients with cancer and may lead to a novel preventive
anticancer vaccine strategy.

INTRODUCTION
Therapeutic cancer vaccines have been devel-
oped and evaluated in clinical trials targeting
different tumor settings and involving thou-
sands of patients with cancer. The observed
overall rate of clinical benefit is a rather
disappointing 20%.'™°

One of the factors responsible for such
limited efficacy is represented by the quality
of target tumor antigens identified over the
years and included in the vaccine (https://
caped.icp.ucl.ac.be/Peptide/list) K Indeed,
tumor antigens need to be sufficiently distinct

from self-antigens to break the immunolog-
ical tolerance that physiologically blocks
undesired autoimmune reactivity against
normal cells.

Tumor-associated antigens (TAAs) are
shared among patients with the same malig-
nancy.*"!" They include different type of
antigens, namely aberrantly overexpressed
self-antigens in tumor cells compared with
normal cells, cell lineage differentiation anti-
gens, which are normally not expressed in
adult tissue'*™ and cancer/germline anti-
gens (also known as cancer/testis), which
are normally expressed only in immune-
privileged germline cells.">™"

Consequently, the main drawback of using
overexpressed or cell lineage differentia-
tion TAAs in cancer immunotherapy is the
induction of T cells with low-affinity recep-
tors (TCRs), which are unable to mediate
effective antitumor responses.% 1 Alterna-
tively, they may be unable to elicit an immune
response given that T cells specific for these
self-antigens may have been removed from
the immune repertoire by central and periph-
eral tolerance.*

To improve the immunogenicity of TAAs,
peptides have been modified (heteroclitic
peptides) to increase their affinity and
binding to the Major Histocompatibility
Complex (MHC)-L1.* Such modified peptides
have been shown to break the immunolog-
ical tolerance, inducing a more potent CDS§*
T cell response able to recognize the native
peptide and kill tumor cells.**™ Indeed, it
has been proven that TCRs are able to cross-
react with multiple pMHCs characterized by
narrow sequence differences.”!

An alternative strategy would be the iden-
tification of natural analog peptides, sharing
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sequence homology with TAAs and able to induce T cells
with cross-reacting TCRs for an improved antitumor cyto-
toxic effect.

In this respect, scattered data suggest that antigens derived
from pathogens (pathogen-associated antigens, PaAs) may
share sequence homology with TAAs and elicit cross-reacting
CD8" Tcell responses, driving the fate of cancer devel-
opment, progression and eventually response to therapy.
Different research groups have reported that patients with
cancer with tumor lesions expressing tumor antigens with
high similarity to pathogens may have a better clinical
outcome.”™® We have recently shown that mutated neoan-
tigens may show >50% sequence similarity to PaAs and the
central TCR-facing residues can be identical. Paired neoan-
tigens and PaAs were shown to elicit crossreacting T cells
in immunized mice and to be cross-recognized by periph-
eral blood mononuclear cells (PBMC) from a long-term
surviving patient with hepatocellular carcinoma (HCC).”
Furthermore, mice prevaccinated with viral epitopes with
high similarity to tumor epitopes have been shown to better
control tumor growth compared with naive mice.

Based on such reported observations, and considering
the large number of non-self-PaAs to which humans are
exposed during their lifetime, we screened all the TAAs
described in the literature and publicly available at cancer
peptide database (https://caped.icp.ucl.ac.be/Peptide/
list) for sequence homology to viral sequences. Surpris-
ingly, several such homologies have been found. More-
over, structural similarities between paired TAAs and viral
peptides as well as comparable patterns of contact with
HLA and TCR o and 3 chains have been observed. There-
fore, viral antigens and tumor antigens may elicit cross-
reacting CD8" T cell responses and an antiviral T cell
memory may be able to control the growth of a cancer
developed during the lifetime, if the expressed TAA is
similar to the viral epitope. This may ultimately represent
arelevant selective advantage for patients with cancer and
may lead to a novel preventive anticancer vaccine strategy.

MATERIALS AND METHODS

Epitope prediction analysis

All the peptides selected in the study were predicted
with the NetMHCpan V4.1 and the NetMHCstabpan
V.1.0 predictive algorithms (https://services.healthtech.
dtu.dk/service.php?’NetMHCpan-4.1;  https://services.
healthtech.dtu.dk/service.php?NetMHCstabpan-1.0).

The peptides deposited at the cancer antigenic peptide
database (https://caped.icp.ucl.ac.be/Peptide/list) were
used to interrogate NetMHCpan V.4.1 tool.”® Nanomer
peptides for the four most prevalent MHC class I HLA-
A*0101, 0201, 0301 and 2402 alleles (http://www.allele-
frequencies.net) have been selected with a predicted
affinity value <100nM (strong binders, SBs).

Likewise, viral nanomer peptides identified by the Basic
Local Alignment Search Tool (BLAST) homology search
were used to interrogate NetMHCstabpan V.1.0 tool™ for
the four most prevalent MHC class I HLA-A*0101, 0201,

0301 and 2402 alleles. SB peptides were selected with a
predicted affinity value <100 nM and stability >1 hour.

BLAST homology search

The TAAs selected as SB according to NetMHCpan
V.4.1 prediction tool have been submitted to BLAST
for a protein homology search against viral sequences
(Viruses—taxid:10239)  within the non-redundant
protein sequences database (https://blast.ncbi.nlm.nih.
gov/Blast.cgi). Homologous viral protein sequences have
been extracted from the protein database of the National
Center for Biotechnology Information (https://www.
ncbi.nlm.nih.gov/) and epitope prediction has been
performed with the NetMHCstabpan V.1.0 tool.

Epitope modeling and molecular docking

The 1AO7 complex was selected from the protein
data bank which includes the structure of the HTLV-I
LLFGYPVYV peptide crystallized with the HLA-A*0201
molecule, the B2 microglobulin, the o and B chains of
the TCR (PDB https://www.rcsb.org/structure/1A07).
The PyMol software (PyMol Molecular graphics system,
V.1.8.6.2) was used to modify the TAX peptide sequence
into the peptides analyzed in the present study. The
Molsoft Mol Browser (version 3.8-7d) was used to generate
the epitope modeling and molecular docking.

IFN-y ELISpot assay

IFN-y ELISpot (BD human IFN-y ELISPOT Set) assay
was performed on PBMCs from HLA-A*0201 healthy
subjects. 4x10° PBMCs/mL/well were stimulated ex vivo
with viral peptides at a final concentration of 10 pg/mL.
In particular, MLGTHAMLV (CytomegalovirusCMV)),
ILDCVLVHL (human papillomavirus (HPV)) and
IIIGALVGV (HIV) viral peptides were used for the ex
vivo stimulation. On day three, 10 U/mL IL-2 was added
to each well. On day five, half of the volume of medium
was replaced with fresh medium containing IL-2 at a final
concentration of 10U/mL. On day seven, PBMCs were
restimulated with each peptide. On day 10, cells were
harvested for IFN-y ELISpot assay. Paired TAA peptides
MLGTHTMEV (gp100), ILDKVLVHL (Caseinolytic Mito-
chondrial Matrix Peptidase Proteolytic Subunit (CLPP))
and IMIGVLVGV (Carcinoembryonic antigen (CEA))
were added at a final concentration of 10j1g/mL to 2x10°
PBMCs per well in 100 pL. RPMI 1640 medium (Capri-
corn Scientific GmbH). PBMCs were cultured at 37°C in
a humidified incubator with 5% CO, for 20 hours. Stim-
ulation with 10pg/mL Phytohemagglutinin (PHA-K;
Capricorn Scientific GmbH) was used as positive control,
PBMCs without added peptides were used as the nega-
tive control, RPMI 1640 medium (Capricorn Scientific
GmbH) was used as background control. The plates were
read with an AID EliSpot Reader Systems (AID GmbH,
Strassberg, Germany). Determinations from triplicate
tests were averaged. Data were analyzed by subtracting the
mean number of spots in the wells with cells and medium-
only from the mean counts of spots in wells with cells and
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antigen. Spot forming units (SFU) were calculated as the
frequency per 10° PBMCs.

The computational model

The computational model CIMMSIM derives from a
general-purpose simulation platform that suitably charac-
terizes the role of the immune response in different human
pathologies such as infections, cancer, hypersensitivity, and
inflammation. The model integrates the primary sequences of
TCRs, BCRs, paratopes, peptides and epitopes of the antigen
(eg, a virus or a tumor antigenic determinant). It exploits
immunoinformatics tools to calculate B-cell epitopes and
TCR peptides of antigenic sequences, and a generic contact
potential to estimate the affinity between T-cells receptors
and peptides presented by antigen-presenting cells, infected
cells, or, as in the present case, malignant (tumor) cells. 04!
Besides that, the model accepts in input any pre-calculated
list of peptides associated with a “ranked likelihood” to bind
a certain HLA,42 for example, NetMHCstabpan.39 Moreover,
an arbitrary value is introduced in the modeling to evaluate
the conformational similarity between the paired peptides.
In the present study, a number of malignant cells (10° cells)
are set in the simulated volume (about 10 pL) at the begin-
ning of the simulation (ie, day 0). These cells promptly start
to duplicate (population doubling time of about 80 hours)
and, in absence of therapy, they would reach a limiting value
determining the interruption of the simulation (this limiting
value is set to 3.4x10° cancer cells/pL).

The vaccination protocol consists of five injections of
paired peptides formulated with a generic “virtual” adju-
vant whose unique effect is to activate innate immune
cells. The vaccine administration protocol is shown in
online supplemental figure 4. The results refer to simu-
lations of 80 days of virtual time post-tumor implantation.

RESULTS

Blast search for homology between tumor antigens and viral
sequences

Peptides from the cancer antigenic peptide database
(https://caped.icp.ucl.ac.be/Peptide/list) were used
to interrogate the NetMHCpan predictive algorithm.
Predicted SBs restricted to the most frequent MHC class I
alleles were selected (nr. 99) with a binding affinity value
<100nM. The vast majority of such SB were identified
for the HLA-A*0201 (75 out 99, 75.7%) and 41/75 were
identified in the “overexpressed” subgroup (table 1).

In order to identify homologous viral sequences, all the
predicted SB TAAs were subjected to global protein BLAST
against the virus sequences within the GeneBank non-
redundant protein database. The search returned a large
number (n=82) of viral sequences sharing homology with
the TAAs and the vast majority (n=75) were HLA-A*0201
restricted. Interestingly, the virus sharing the highest number
of sequences with TAAs is the HIV type 1 (HIV-1) (36/82),

followed by the Herpesviruses (22/82) and by the human
papillomaviruses (9/82) (table 2).

Epitope prediction for the viral sequences

All the 82 viral sequences identified through the BLAST
search, sharing sequence homology with the TAAs,
were used to interrogate the NetMHCstabpan predic-
tive algorithm. The results showed that only a limited
number of such viral sequences (nr. 20) are predicted
to be SBs to the corresponding MHC-class I alleles, and
9/20 sequences (45%) are derived from HIV-1. Affinity
values are significantly lower than 100nM and in most
cases lower than 50nM, which are comparable to those
of the corresponding TAAs (table 3). Furthermore, the
algorithm predicts an average binding stability of the viral
sequences, expressed in hours, which is lower than the one
predicted for the TAAs (6.01 hour vs 10.3hour) but does
not reach the statistical significance (table 3 and online
supplemental figure 1). Overall, with the exception of few
pairs with the viral sequences having suboptimal values of
affinity and stability, all the others show predicted values
of the highest biological relevance (figure 1).

Epitope modeling and molecular docking

In order to verify that predicted paired TAA and viral
epitopes share similar contact residues with both the HLA
molecule and the TCR, epitope modeling and molecular
docking were performed for each paired peptides. This
was possible only for HLA-A*0201 restricted epitopes, due
to the lack of crystallized structures including both HLA
and TCR for other alleles deposited in the PDB. Epitopes
crystallized with the HLA-A*0201 and the TCR showing
sequence homology with TAA peptides were not found.
Therefore, fully aware of the possible caveats, the 1AO7
crystallized complex including the HTLV-I TAX epitope
was used as general template to conduct the analyses.

CLPP versus E1 HPV

The ILDCVLVHL E1 HPV peptide is predicted to have a
higher affinity (12.9 vs 24.98nM) and a similar stability
(5.36 vs 6.54hours) than the ILDKVLVHL CLPP peptide.
The interacting pattern between the residues of both
peptides and the HLA as well as the 3 chain of the TCR is
identical. The only difference is represented by the differ-
ence in position 4 of the basic K with a polar C residue,
which substantially changes the contact pattern with the o
chain of the TCR (figure 2A). This would suggest that the
TCR clones targeting the two peptides would share only
the same P chain. Furthermore, the pattern of hydrogen
bonds observed in the paired peptides is extremely similar
with identical distances between the interacting residues.
However, only the HPV peptide shows two bonds between
the L2 residue and the HLA K66 as well as the TCR o
chain Q30, supporting the higher affinity to the HLA
molecule and suggesting a limited T cell cross-reactivity
(online supplemental figure 2A).
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Gp100 versus UL20 HCMV

The MLGTHAMLV UL20 human cytomegalovirus
(HCMV) peptide is predicted to have high but lower
affinity (15.38 vs 7.67nM) and a good but lower stability
(3 vs 6.4hours) than the MLGTHTMEV gpl00 peptide.
The interacting pattern between the residues of both
peptides and the HLA as well as the o and B chains of
the TCR is identical. Interestingly, the polar to non-polar
T-A mismatch at position 6 does not changes the contact
pattern (figure 2B). This would suggest that the TCR
clone targeting the two peptides would share the same
o and B chains. Furthermore, the pattern of hydrogen
bonds observed in the paired peptides is extremely
similar with identical distances between the interacting
residues. This would support the high-affinity value for
both peptides (online supplemental figure 2B).

Gag polyprotein, HIV 1
E1 protein human papillomavirus 57

Virus
Virus
Virus
Virus

HSPH1 versus large tegument protein HSV-2

The RLADDMTSV large tegument protein HSV-2
peptide is predicted to have high and similar affinity
(5.65 vs 3.39nM) and a good but lower stability
(11.18 vs 24.75 hours) than the RLMNDMTAV HSPH1
peptide. The mismatches along the sequence between
the paired peptides are conservative non-polar resi-
dues (A3M), non-conservative polar to non-polar
(S8A) and polar to acidic (N4D). Nevertheless, this
does not substantially change the contact pattern
between the residues of the peptides and the HLA as
well as the o and B chains of the TCR, suggesting that
the TCR clone targeting the peptides would share the
same chains (figure 2C). The pattern of hydrogen
bonds observed in the paired peptides shows signif-
icant differences, including an increased distance
at R1 — HLA Y159 and A3 — HLA Y99 bonds and the
missing L2 — TCR o chain Q30. This may explain
the lower binding stability of the HSV-2 peptide to
the HLA compared with the HSPHI peptide (online
supplemental figure 2C).

Blast Seq
Blast Seq
Blast Seq
SLFNAVVTL
Blast Seq
LAAFKSFLK

Tumor specific
Tumor specific
N/A

Overexpressed
Tumor specific

TAA

Overexpressed

TAA

SLFRAVITK
LASFKSFLK

TAA
N/A

HEPACAM versus polyprotein encephalomyelitis virus

The RLAPFGYKI polyprotein encephalomyelitis virus
peptide is predicted to have high but lower affinity
(28.02 vs 4.25nM) and a lower stability (17.78 vs
7.02hours) than the RLAPFVYLL HEPACAM peptide.
The interacting pattern between the residues of both
peptides and the HLA as well as the oo and B chains
of the TCR is identical. Interestingly, the positive to
non-polar K-LL mismatch at position 8 as well as the
conservative non-polar residues (G6V; I9L) do not
change the contact pattern (figure 2D). This would
suggest that the TCR clone targeting the two peptides
would share the same o and B chains. Furthermore,
the pattern of hydrogen bonds observed in the paired
peptides is extremely similar with identical distances
between the interacting residues. The only differ-
ences are observed in the interactions with the HLA
L98 and Y84 residues which would explain the lower
affinity and stability to the HLA of the polyprotein

Envelope glycoprotein B (HHV-8)

Pol polyprotein, HIV 1

Virus
Virus
Virus
Virus

Blast Seq
ETMFREYNY
Blast Seq
Blast Seq
Blast Seq
ALNFPGKWK

HLA-A*0201
Mutation
HLA-A01:01
Mutation
Differentiation
TAA

N/A
HLA-A03:01
Mutation

TAA

N/A
Differentiation

Table 2 Continued

YVDFREYEY
ALNFPGSQK
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Table 3 Continued

Ubiquitous

Overexpressed

Secernin 1

35,44
94,22
20,99

KMDAEHPEL
RMDAEHPGL
KMDEEHPGL
LASFKSFLK

A*02:01

AXA17413.1

Pol PB1 (influenza B virus)

ABL77000.1

Pol PB1 (influenza B virus)

E1 (HPV 57)

BAF80482.1

Ubiquitous

Overexpressed

RGS5

90,6
78,01

A*03:01

LAAFKSFLK

TAA, tumor-associated antigen.

encephalomyelitis virus peptide compared with the
HEPACAM peptide (online supplemental figure 2D).

CD274 versus ENV HIV

The LLNAFAIAV Env HIV peptide is predicted to have
high but lower affinity (8.96 vs 4.62nM) and a good but
lower stability (11.15 vs 23.08 hours) than the LLNAF-
TVTV CD274 peptide. The interacting pattern between
the residues of both peptides and the HLA as well as the
o and [ chains of the TCR is identical. Interestingly, the
polar to non-polar T-A mismatch at positions 6 and 8
as well as the conservative non-polar residues (I7V) do
not change the contact pattern (figure 2E). This would
suggest that the TCR clone targeting the two peptides
would share the same o and B chains. Furthermore,
the pattern of hydrogen bonds observed in the paired
peptides is extremely similar with identical distances
between the interacting residues. The only difference is
the missing A8 — HLA D77 bond which would explain
the lower affinity and stability to the HLA of the Env
HIV peptide compared with the CD274 peptide (online
supplemental figure 2E).

MUC1 versus ORF46 HHV8

The LLLNTVLTV ORF46 HHVS8 peptide is predicted
to have a higher affinity (5.88 vs 23.85nM) with higher
stability (13.11 vs 6.69hours) than the LLLLTVLTV
MUCI peptide. The only mismatch along the sequence
between the two peptides is the non-conservative polar
to non-polar residue N to L at position 4. The contact
pattern between the residues of the peptides and the
HLA as well as the 3 chain of the TCR is identical. On the
contrary, the contact pattern with the o, chain of the TCR
is substantially different, suggesting that the TCR clone
targeting the peptides would share the same B chain and
a different o chain (figure 2F). The pattern of hydrogen
bonds observed in the paired peptides shows a missing L.2
— HLA K66 bond in the HHV8 peptide and two missing
L2 — TCR o chain Q30 as well as T8 — HLA D77 bonds in
the MUCI peptide. All other bonds show no deviation
in the distances. Such a pattern of hydrogen bonds may
explain the higher affinity and stability to the HLA of the
HHVS peptide compared with the MUCI peptide (online
supplemental figure 2F).

KIF20A versus Env HIV

The SLAEDDVVV Env HIV peptide is predicted to
have a high and similar affinity (33.9 vs 32.87nM)
with similar stability (1.84 vs 2.41hours) than the
LLSDDDVVV KIF20A peptide. The mismatches along
the sequence between the two peptides are the non-
conservative polar to non-polar S1L and A3S residues
as well as the conservative acidic E5D residues. The
contact pattern between the residues of the peptides
and the HLA as well as the § chain of the TCR is iden-
tical. On the contrary, the contact pattern with the o
chain of the TCR is substantially different, suggesting
that the TCR clone targeting the peptides would share
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Figure 1 Affinity and stability of paired peptides. The affinity and stability to corresponding HLA molecules were predicted by
NetMHCstabpan for each viral and tumor-associated antigen paired peptides. The stability (Thalf) values are expressed in hours

(h); the affinity (Aff) values are expressed in nanomolarity (nM).

the same P chain and a different o chain (figure 2G).
The pattern of hydrogen bonds observed in the paired
peptides shows three missing bonds in the KIF20A
peptide, namely L2 — HLA K66, L2 — TCR o chain Q30
and A3 — HLA Y99. All other bonds show minor devi-
ations in the distances. Nevertheless, the affinity and
stability to the HLA of the two peptides are similar
(online supplemental figure 2G).

Tyrosinase versus Gag HIV and Env HERV

The NLLAVLYCV Gag HIV peptide and the MLLAALMIV
Env HERV peptide are predicted to have a very high and
similar affinity (6.18 and 5.38 vs 9.16 nM) with high and
similar stability (17.51 and 11.83 vs 12.3hours) than
(shouldn't be to?) the MLLAVLYCL tyrosinase peptide.
The two mismatches along the sequence between the
Gag HIV and tyrosinase peptides are conservative non-
polar residues (L9V) and non-conservative polar to
non-polar (N1IM). This does not substantially change
the contact pattern between the residues of the peptides

and the HLA as well as the B chain of the TCR, with a
minor change in the contact pattern with the o chain.
This would suggest that the TCR clone targeting the
peptides would share the same chains. The mismatches
along the sequence between the Env HERV and tyrosi-
nase peptides are conservative non-polar (Ab5V and VIL)
and non-conservative polar to non-polar residues (M7Y
and I8C). This does not substantially change the contact
pattern between the residues of the peptides and the
HLA as well as the o chain of the TCR. On the contrary,
the contact pattern with the B chain of TCR shows a
substantial change. This would suggest that the TCR
clone targeting the peptides would share the same o
chains but different B chains (figure 2H). Furthermore,
the pattern of hydrogen bonds observed in the paired
peptides is extremely similar with identical distances
between the interacting residues with minor deviations.
The only exception for the Env HERV peptide is the
missing M1 — HLA Y159 bond, although this does not

Ragone C, et al. J Immunother Cancer 2021;9:6002694. doi:10.1136/jitc-2021-002694
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i,
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.5y
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HIV Envl RLVDEFLAI

HIV Env2 RLVNDFLAL
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» W
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Figure 2 Structural predicted conformation of paired peptides. The conformation of the paired viral and tumor-associated
antigen peptides bound to the HLA-A*02:01 molecule is shown. The prediction was performed using as template structure the
HTLV-I LLFGYPVYV peptide crystallized with the HLA-A*0201 molecule, the 32 microglobulin, the oo and B chains of the T cell
receptor (TCR) (PDB https://www.rcsb.org/structure/1AQ7). Blue areas = contact points with HLA molecule; Red areas=contact
points with the TCR o chain; Green areas=contact points with the TCR 3 chain.

impact neither on the affinity nor on the stability to the
HLA compared with the Gag HIV and the tyrosinase
peptides (online supplemental figure 2H).

CEA versus Env HIV

The IMVGALIGVEnvl and IIIGALVGVEnv2 HIV peptides
are predicted to have a very high and similar affinity (4.86
and 8.04 vs 3.61 nM) with high but lower stability (8.4 and
9.1 vs 29.43hours) than the IMIGVLVGV CEA peptide.

The mismatches along the sequence between the Env HIV
and CEA peptides are all conservative non-polar residues.
This does not substantially change the contact pattern
between the residues of the peptides and the HLA as well
as the o and [ chains of the TCR, suggesting that the TCR
clone targeting the peptides would share the same chains.
In particular, the Env2 HIV peptide shows the highest
similarity with the CEA peptide (figure 2I). Furthermore,
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the pattern of hydrogen bonds observed in the paired
peptides is extremely similar with identical distances
between the interacting residues. The only exception for
the Envl peptide is the more distant V3 — HLA Y99 bond;
for the Env2 peptide the missing I1 - HLA Y159 bond and
the closer I2 — HLA E63 bond. The latter differences may
support the lower affinity value to the HLA of the Env2
peptide compared with the Envl and the CEA peptides
(online supplemental figure 2I).

Telomerase versus Env HIV

The RLVDEFLAI Envl and RLVNDFLAL Env2 HIV
peptides are predicted to have a high but lower affinity
(18.98 and 30.13 vs 5.33nM) with good but lower stability
(3.13 and 1.7 vs 5.87hours) than the RLVDDFLLV Telo-
merase peptide. The mismatches along the sequence
between the Envl HIV and Telomerase peptides are
conservative non-polar (A8L and 19V) and conservative
acidic residues (E5D). This does not substantially change
the contact pattern between the residues of the peptides
and the HLA as well as the oo and B chains of the TCR.
This would suggest that the TCR clone targeting the
peptides would share the same chains. On the contrary,
the mismatches along the sequence between the Env2
HIV and Telomerase peptides are conservative non-polar
(A8L and L9V) and non-conservative polar to acidic resi-
dues (N4D). The latter has a substantial change in the
contact pattern between the residues of the peptides
and the o and B chains of the TCR, suggesting that the
TCR clones targeting the peptides would be different
(figure 2L). Furthermore, the pattern of hydrogen bonds
observed in the paired Envl HIV and the telomerase
peptides shows a deviation in the distance between the
D4 — TCR o chain S100 residues. On the contrary, the
pattern of hydrogen bonds observed in the paired Env2
HIV and the Telomerase peptides shows a deviation both
in the distances in the D4 — TCR o chain S100 as well as
in the R1 — HLA Y159 residues. The latter deviations in
the pattern of hydrogen bonds may explain the substan-
tially lower affinity and stability to the HLA of the Enva
peptide compared with the Envb HIV and the Telomerase
peptides (online supplemental figure 2L).

Secernin1 versus PolB1 influenza

The RMDAEHPGL Infll peptide is predicted to have
a lower affinity (94.22 vs 35.44nM) while the KMDEE-
HPGL Inf12 peptide is predicted to have a higher affinity
(20.99 vs 35.44nM) with similar stability (1.18 and 0.98 vs
1.03hours) to the HLA than the KMDAEHPEL Secernin
1 peptide. The mismatches along the sequence between
the Infll and Secernin 1 peptides are conservative basic
residues (R1K) and non-conservative non-polar to acidic
residues (G8E). This does not substantially change the
contact pattern between the residues of the peptides
and the HLA as well as the B chain of the TCR, while the
contact pattern with the o chain of the TCR is severely
affected. This would suggest that the TCR clone targeting
the peptides would share the same B chain but different

0. chains. On the contrary, the mismatches along the
sequence between the Inflb and Secernin 1 peptides are
non-conservative non-polar to acidic residues (A4E and
G8E). This does not substantially change the contact
pattern between the residues of the peptides and the
HLA as well as the B chain of the TCR, while the contact
pattern with the o chain of the TCR is slightly affected.
This would suggest that the TCR clone targeting the
peptides would share the same B chain but different o
chains (figure 2M). Furthermore, the pattern of hydrogen
bonds shows a missing bond in the Infl2 and Secernin 1
peptides, namely L2 — HLA K66; a missing bond in the
Infll and Infl2 peptides was observed, namely L9 — HLA
T143. Moreover, a significant deviation was observed in
the in the distance between A4 — TCR o chain bond of
the Infla peptide. These differences in the hydrogen
bonds may explain the affinity and stability to the HLA
observed for the two Influenza peptides compared with
the Secernin 1 peptide (online supplemental figure 2M).

Ex vivo cross-reactivity to viral antigens and TAAs

A cross reactive immunity between paired HLA-A*02:01
restricted viral epitopes and TAAs was verified ex vivo
using PBMCs from HLA-A*02:01 subjects. In order to
simulate how an in vivo preimmunization to viral antigens
might cross-react to a paired TAA expressed by cancer
cells, PBMCs were “immunized” ex vivo with each of the
selected viral peptides. After 14 days, the IFNy ELISpot
assay was then performed by restimulating in parallel with
the “vaccine” viral peptide or the paired TAA peptide. The
first observation was that individual subjects had variable
levels of circulating T cells reacting to the viral peptides,
with the strongest reactivity against the HPV ILDCVLVHL
peptide and a significantly weaker reactivity against the
CMV MLGTHAMLYV and HIV IIIGALVGV peptides. The
reactivity against the latter two peptides was not statisti-
cally different (figure 3A,B). Considering that the three
viral peptides show comparable binding affinity, stability
and T-cell propensity prediction scores, such a different
IFNy production could be explained by the expansion
ex vivo of a pre-existing immunological memory to the
HPV peptide. Strikingly, restimulation with paired TAA
peptides induced a T cell cross-reactivity in all three
settings, with inter-subject variation (online supplemental
figure 3). Overall, gp100 and CEA TAA peptides induced
an IFNy production not statistically different from the
paired viral peptides, CMV and HIV-1 respectively. On the
contrary, restimulation with CLPP peptides induced a T
cell response which was significantly lower than the HPV
paired peptide (113 vs 802 SFU x 10° cells) (figure 3C).
Interestingly, although binding affinity, stability and
T-cell propensity prediction scores were similar between
the three paired peptides, the structural conformation of
the HPV and CLPP paired peptides showed a significant
discordance (figure 2A). The latter observation could
explain the lower T cell cross-reactivity induced by these
two paired peptides.
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Figure 3 Ex vivo immunization with paired peptides. PBMCs from HLA-A*02:01 positive healthy subjects were immunized ex
vivo with viral peptides. After 14 days, IFNy EliSpot assay was performed restimulating the cells with the same viral peptide or

with the paired tumor-associated antigen (TAA) peptide. Individual (A) and average (B) responsiveness to each viral peptide. (C)
Average cross-reactivity versus viral and paired TAA peptides. SFU = IFNy spot forming units.

Prediction of cross-reactive antitumor T cell response
Simulation experiments of crossreactive antitumor T
cells responses induced by the homologous viral epitopes
were designed as previously described.*

Each experiment simulated an in vivo vaccination with
a TAA or its homologous viral epitope consisting of of five
injections at days 7, 10, 13, 16 and 19. A subsequent chal-
lenge was simulated with 1x10” cancer cells expressing
the TAA. The simulations showed that in most cases the
clearance of the tumor cells is reached within an identical
timeframe and curve’s shape, suggesting that the T cell
immune response induced by the viral epitopes has the
same antitumor efficacy as the one induced by the paired
TAA. In other cases, for which the prediction affinity and
stability values are significantly different, the timeframe
is slightly (HSPHI), significantly (HEPACAM, TELO-
MERASE) delayed or no cross-reactivity is observed at all
(KIF20A). Interestingly, the simulation model is able to
assess the limited cross-reactivity between paired peptides
with similar prediction affinity and stability values but
showing a significant conformational difference (CLPP/
HPV; MUC1/HHVS;  SECERNIN1/INFLUENZA)
(figure 4A,B). The same simulation approach is able to
predict the role of the CD8" T cell subset in the biolog-
ical effect. Indeed, the curves of tumor growth show a
rapid and steep increase when the removal at day 40 of
the CD8" T cells is simulated in the experimental models,
and the percentage of cancer-free samples does not reach
the zero (figure 4C,D).

DISCUSSION
In the present study we aimed at identifying, for the
first time, viral epitopes with sequence and structural
homology to TAAs, to be selected for eliciting an efficient
cross-reacting CD8" T cell response with a potential strong
anticancer activity. Indeed, previous seminal studies by
Oldstone have showed the same type of homology only
between viral sequences and cellular antigens (the so
called "molecular mimicry"), laying the foundation for
the biological mechanisms driving the autoimmune
diseases. "™

All the TAAs from the cancer peptide database have
been analyzed and a list of nonamer peptides have been
predicted as SBs to the MHC class-I HLA-A*01:01, 02:01,
03:01 and 24:02 alleles, which altogether cover about
50% of the world population. In particular, about 60%
of the European as well as the north American Cauca-
sian populations, 50% of the Japanese population, 30%
of the Chinese population, 20% of the Indian population
(http:/ /www.allelefrequencies.net). Among the predicted
SBs, only those with a very high affinity (<100nM) have
been selected, given that, according to our previous
studies, only these are confirmed to bind the HLA-
A*02:01 molecule in 100% of the cases.”’ Overall, 99 SBs
have been predicted for the four alleles analyzed; 75.7%
of them restricted to the HLA-A*02:01% and 54.6% of
these belonging to the overexpressed subgroup. A large
number (n=82) of viral sequences sharing homology with
the TAAs were identified and the vast majority (n=75)
were HLA-A*02:01 restricted. Such sequences were not
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Figure 4 Simulation of immunization. An in vivo immunization and tumor challenge was simulated with 100 replicates.

Multiple administrations of the viral or the paired TAA peptides were considered; the challenge was simulated with cancer cells
expressing the tumor-associated antigen (TAA) peptide. The tumor growth (A) and the inverted Kaplan-Meier survival curve (B)
are shown for each protocol. The same protocols were executed simulating the complete ablation of CD8" T cells (C, D). In each
paired peptides, the solid line indicates the results obtained with the TAA immunization while the circled line indicates the results

obtained with the paired viral peptide immunization.

uniformly derived from different human viruses. Indeed,
the HIV-1 contributed by far with the largest number of
viral sequences (36/82), followed by the herpesviruses
(22/82) and the outdistanced human papillomaviruses
(9/82). However, only 20 of such viral sequences are
predicted to be SBs to the corresponding MHC-class I
alleles. Strikingly, 45% of these sequences are derived
from Gag and Env HIV-1 proteins, which is unlike to be
a random observation (online supplemental figure 5).
On the contrary, this would indicate that HIV-1 provide
a significant number of TAA-like epitopes, supporting
the epidemiological notion that people living with HIV
or AIDS (PLWHA) have a significantly lower incidence of
non-viral associated solid tumors compared with the HIV-
negative population.’®*” Of interest is also the observed
homology between the melanoma-associated tyrosi-
nase TAA and an epitope derived from the HERVK env
protein. Indeed, the HERVK expression in melanoma has
been reported and a cross-reacting T cell response may
play a relevant role in tumor prognosis.*®

The epitope modeling showed that most of the paired
TAA and viral epitopes not only share the same confor-
mation but also the same contact patterns when docked
into the HLA-A*02:01 molecule. In most cases, the paired
peptides show the same contact patterns with the TCR o
and B chains. The best examples are represented by the
gpl00/HCMYV, the HEPACAM/ENCEPH, the CD274/
HIV, tyrosinase/HIV, CEA/HIV and telomerase/HIVa
pairs for which the contact pattern with the HLA-A*02:01

as well as the TCR o and [ chains are identical. This would
strongly suggest that, for each pair, the same CDS" T cell
clone may be able to cross-react with both peptides when
presented in the context of the HLA-A*02:01 molecule.
Moreover, in all cases, with the exception for the tyros-
inase/HERV and CEA/HIVa pairs, the contact pattern
with the TCR B chain is identical for paired epitopes
suggesting that the reacting CD8" T clones may express
a TCR sharing the same [ chain coupled with a different
0. chain. As anticipated, structural homologies between
pair of peptides are highly dependent on the type of
amino acid changes at specific positions and conservative
changes are always predictive of structural preservation.

Furthermore, the number and the distance of hydrogen
bonds formed by the residues of the paired epitopes with
the HLA-A*02:01, the TCR o and (3 chains fully confirm
the contact patterns as well as the predicted values of
binding and stability. The lack of the homology between
the analyzed peptides and the HTLV-1 Tax peptide crys-
tallized in the 1AO7 structure may represent a bias for the
constrained conformation. Nevertheless, regardless of
the selected surrogate model, the different conformation
and contact pattern between the peptide pairs evaluated
in the present study confirm that indeed the approach
is reliable to evaluate and compare conformation and
molecular docking of peptides.

The biological confirmation of cross-reactive T cell
responses against the paired peptides was assessed by ex
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vivo immunization experiments. PBMCs were induced
for 14 days with the viral epitope and restimulated in
parallel with the vaccine viral peptide and the paired TAA
peptide. The results clearly showed induction of a signif-
icant cross-reactive response within the paired peptides.
This effect was directly correlated with the conforma-
tional homology between the paired peptides. Indeed, the
lowest cross-reactivity was observed between the HPV and
CLPP peptides characterized by a significant conforma-
tional difference due to the C to K amino acid mismatch
at position 4. The immunological cross-reactivity induced
by paired peptides was further confirmed using a simula-
tion approach, showing a noteworthy concordance with
the prediction values as well as the conformational simi-
larities. Indeed, also in this approach, the simulation of a
vaccination with the HPV peptide showed the induction
of a partial cross-protection against tumor cells expressing
the paired CLPP TAA, while vaccination with the CMV
and HIV-1 peptides induced a perfectly matching protec-
tion against tumor cells expressing the paired gpl00 and
CEA TAAs, respectively.

In conclusion, the present study shows for the first time
the high sequence and structural homology between
TAAs and viral sequences. In some cases, such homologies
are striking. The number of high homologous epitope
pairs is unlike to be a random event, given that the prob-
ability of an identical stretch of seven or eight amino acid
in a nonamer sequence is extremely low (7.8x10™""and
3.9x107", respectively).

On the contrary, this would strongly support the
concept that TAAs and viral antigens may converge in
the evolutionary process and may represent two sides of
the same coin. In this respect, the previous exposure to
specific viral epitopes may result in the establishment of a
bi-specific antiviral/anticancer T cell memory if a cancer
would develop during the lifetime presenting, by chance,
a TAA sharing sequence and conformation similarities
with the viral epitope. This may ultimately represent a
relevant selective advantage for patients with cancer and
may provide a totally new set of antigens for developing a
novel preventive anticancer vaccine strategy.
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