Article Text

Download PDFPDF

P04.02 Diversity of CD4+ blood T-cell clonality predicts longer survival with CTLA4 or PD-1 checkpoint inhibition in advanced melanoma
Free
  1. A Arakawa1,
  2. S Vollmer1,
  3. J Tietze2,
  4. A Galinski1,
  5. MV Heppt3,
  6. C Berking3 and
  7. JC Prinz1
  1. 1Department of Dermatology and Allergy, LMU, München, Germany
  2. 2University Hospital Rostock, Rostock, Germany
  3. 3Universitätsklinikums Erlangen, Erlangen, Germany

Abstract

Background T cells play a central role in tumor immunity. In principle, T cell requires antigen recognition by T-cell receptor (TCR) to gain effector function. Antigen-driven activation leads to clonal T-cell expansion with generation of progeny cells that all express the same chronotypic TCR. This makes TCR analysis a useful tool to comprehensively and individually understand antigen-specific T-cell responses. Indeed, we previously showed that the TCR repertoires of CD8+ T cells but not CD4+ T cells are restricted with many clones in the blood of psoriasis patients. Together with the strong genetic association to HLA-C*06:02 causing an autoimmune CD8+ T-cell response against melanocytes in psoriasis, our results from TCR analyses clearly indicate an autoimmune pathogenesis of psoriasis.

Patients and Methods Here, we utilize our expertise to understand how anti-tumor T-cell responses affect clinical responses and immune-related adverse events (irAEs) in therapeutic checkpoint inhibitions. We analyzed melanoma patients upon the therapeutic blockade of cytotoxic T-lymphocyte-associated protein 4 (CTLA4) or programmed cell death 1 (PD-1) using TCR Vβ-gene spectratyping.

Results Surprisingly, we observed variable levels of restriction in CD4+ and extensive restrictions in CD8+ T-cell repertoires in the blood of melanoma patients compared to healthy controls. This indicates the presence of a substantial numbers of CD4+ and CD8+ T-cell clones in the blood prior to the initiation of immunotherapy. The clones detected in the blood were enriched in tumor-infiltrating lymphocytes (TILs). This suggests that melanoma-reactive T-cell clones circulate more frequently in melanoma patients, although it is generally assumed that tumor-specific T-cell clones are only detectable in TILs. Greater diversification particularly in CD4+ blood T-cell clones before immunotherapy correlated with long-term survival after CTLA4 or PD-1 inhibition. In patients who developed severe immune-related adverse events (irAEs) during CTLA4 blockade, we detected newly expanded blood T-cell clones, suggesting that newly emerged T-cell responses contributed to these irAEs.

Conclusions Our data demonstrate that the diversity of T-cell clones in the circulation may reflect the anti-melanoma responses. This study provides a rationale for predicting clinical responses to checkpoint inhibitors using patient’s blood, and also emphasizes importance of CD4+ T cell-mediated anti-tumor immunity in melanoma.

Disclosure Information A. Arakawa: None. S. Vollmer: None. J. Tietze: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Significant; BMS. D. Speakers Bureau/Honoraria (speakers bureau, symposia, and expert witness); Modest; BMS, MSD, Novartis, Roche, Almiral. A. Galinski: None. M.V. Heppt: None. C. Berking: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Significant; Amgen, AstraZeneca, BMS, Incyte, Merck, MSD, Novartis, Pierre Fabre, Regeneron, Roche, Sanofi/Aventis. J.C. Prinz: None.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.