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Figure 7  CAG promotes MHC-I expression in colon cancer organoids and enhances the killing ability of CD8 T cells. (A) After 
3 days of subculture, colon cancer organoids were incubated with CAG with different concentrations for 24 hours, following 
which images were captured, scale bar=200 µm (up); H&E staining, scale bar=100 µm (middle) and immunohistochemistry 
stained with antibody of HLA-A for 1:100, scale bar=100 µm (down). (B) After 3 days of subculture, colon cancer organoids 
were incubated with CAG at different concentrations for 24 hours, and then the mRNA of CTSB, HLA-A, ANXA1, and B2M 
were detected. (C) Schematic diagram of coculture of human CD8 T cells and colon cancer tumor organoids. (D) Image 
acquisition after coculture of CD8 T cells with colon cancer organoids for 24 hours; the small and bright cells are CD8 T cells. 
The concentration of CAG was 12.5 µM and anti-PD-1 was 5 µg/mL, scale bar=100 µm. (E–H) After coculture of CD8 T cells 
with colon cancer organoids for 24 hours, flow cytometry was used to detect the expression of CD69 and IFN-G on CD8 T 
cells. (I) Analysis of HLA-A gene expression in colon cancer by TCGA database. n=Normal, T=Tumor. (J) Relationship between 
high and low expression of HLA-A gene and survival rate in colon cancer analyzed by TCGA database. (K) Analysis of the 
relationship between high expression of HLA-A gene and high expression of IFNG gene and survival rate in colon cancer by 
TCGA database. (L) Analysis of the relationship between high expression of HLA-A gene and high expression of PDCD1 gene 
and survival rate in colon cancer by TCGA database. Data are represented as mean±SEM. P values are determined by two-
tailed Student’s t-test. *p<0.05, **p<0.01. CAG, cycloastragenol; MHC-I, major histocompatibility complex I; TCGA, the Cancer 
Genome Atlas.
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in vitro experiments. Flow cytometry analysis also showed 
that CAG increases the infiltration of CD45 immune 
cells, including CD8+ T cells and NK cells. In addition, 
the ability of IFN-γ and GZMB secreted by CD8+ T cells 
is also significantly enhanced by CAG. To determine 
whether CD8 T cells or macrophages play a major role in 
the antitumor experiment of CAG, we tested our conjec-
ture with transplanted tumors in nude mice. Due to the 
development disorder of T cells caused by immunization 
of the thymus in nude mice while the function of macro-
phages still exists. However, the results showed that CAG 
could not effectively kill transplanted tumors in nude 
mice. These results suggest that CAG can enhance the 
killing effect of CD8+ T cells on tumors by promoting the 
antigen presentation of cancer cells.

Next, we explored how CAG promotes the antigen 
presentation of cancer cells by TRAP technology to find 
the target protein of the CAG to explain the phenom-
enon. CTSB is a cysteine hydrolase, which can interact 
with other proteins and degrade in lysosomes.50 We spec-
ulated that it might interact with antigen presentation-
related proteins to cause its degradation. And it has 
been reported that the MHC-I molecule is degraded in 
lysosomes, resulting in the loss of tumor cell antigen-
presenting function.13 Therefore, we suspected that 
CTSB might bind to the MHC-I molecule and cause its 
degradation in lysosomes. We verified this hypothesis that 
CAG could prevent the degradation of MHC-I by inhib-
iting the interaction of CTSB and MHC-I. Organoids is 
an effective model to study the progress of tumor diseases 
and have a great significance to promote the treatment 
of clinical tumor patients by investigating the effect of 
drugs on the growth of tumor organoids and the specific 
mechanism.51 52 Through our experiments, we found that 
combined with CAG and PD-1 antibodies have a good 
ability to inhibit tumor growth whether in mouse trans-
planted tumor model or in human colon cancer organ-
oids. The shortage of this study is the limited number of 
xenograft samples and patient organoids. Although there 
are similar conclusions between murine models and 
human organoids, further investigation is needed.

Here, we describe the specific mechanism by which 
CAG inhibits the growth of colon cancer, mainly by inhib-
iting the degradation of MHC-I mediated by CTSB, to 
enhance the antitumor immunity of CD8+ T cells. On the 
one hand, it promotes the antigen presentation of cancer 
cells, and on the other hand, it relieves the depletion state 
of CD8+ T cells. The experimental results also confirmed 
that the combination of CAG and PD-1 antibody had a 
superior antitumor effect.

In conclusion, to the best of our knowledge, these 
findings highlight that CTSB downregulation confers 
antitumor immunity. Our research also explicated the 
specific mechanism of CAG in inhibiting the growth of 
colorectal cancer. It is worth mentioning that CAG has 
great potential as a health product in the European and 
American markets. Our research results provide a poten-
tial anticancer drug candidate.
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