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Supplemental Methods 

 

Whole exome sequencing was performed at the Broad Institute on 17 RNAlater tumor 

samples (11 at baseline on trial and 6 on treatment) using Illumina's ICE hybrid-capture bait set 

as previously described. (1-3) Germline DNA was obtained from peripheral blood mononuclear 

cells. Exome sequencing data alignment and initial processing were performed using the Broad 

Institute Picard pipeline. BAM files were uploaded into FireCloud 

(https://software.broadinstitute.org/firecloud/). Sequencing data were passed through additional 

quality control and processing methods in FireCloud. Quality-control cutoffs were mean target 

coverage > 100X (tumor) and > 50X (matched normal; GATK Depth of Coverage (4), cross-

contamination of samples estimation (ContEst(5)) < 5%, tumor purity (ABSOLUTE (6), 

FACETS (7)) ≥ 10%, and tumor-in-normal contamination (deTIN (8)) < 10%. Two tumors were 

removed for purity < 10%. 

An adaptation of the Getz Lab Cancer Genome Analysis WES pipeline 

(https://docs.google.com/document/d/1VO2kX_fgfUd0x3mBS9NjLUWGZu794WbTepBel3cBg

08) developed at the Broad Institute was used to call, filter and annotate somatic mutations with 

modifications to enhance variant classification. For variant calling, the MuTect method (9) was 

employed to identify somatic single-nucleotide variants with computational filtering of artifacts 

introduced by DNA fixation procedures (4) and DNA oxidation during sequencing. (10) Strelka 

was used to identify small insertions or deletions, (11) and a panel of normal filtering was 

utilized for rare artifacts specific to the bait set used. (9) Oncotator was applied to annotate 

identified alterations. (12) 

Only somatic non-synonymous mutations (i.e., missense, nonsense, indel, splice site) 

were included to enrich for functional genomic effects. Tumor mutation burden (TMB) was 
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defined as the nonsynonymous mutational burden normalized by megabases covered at adequate 

depth to detect variants with 80% power using MuTect given estimated tumor purity by 

ABSOLUTE. (2) The number of bases covered at a given depth threshold in the tumor was 

determined using the GATK DepthOfCoverage method. (4) Tumor purity and ploidy were 

estimated using ABSOLUTE (26) and FACETS. (7) The total number of copy number 

alterations for each tumor was calculated using an adapted binary segmentation method 

(CapSeg) (13) and genes were annotated with Oncotator. (12) Allelic copy number alterations 

were identified by incorporating heterozygous single-nucleotide polymorphisms into the binary 

segmentation method (Allelic CapSeg). Allelic segments were adjusted for tumor purity and 

ploidy. Allelic amplifications and deletions were called, integrating the purity- and ploidy-

corrected allelic copy number, and then separated into gene-level copy number alterations. (6) 

Whole transcriptome sequencing was performed at the Broad Institute on 17 RNAlater 

tumor samples (11 at baseline on trial and 6 on treatment) using established methods. (1, 3) RNA 

sequencing results were aligned using STAR and then quantified with RSEM to yield gene-level 

expression in transcripts per million (TPM).(14, 15) The following alignment metrics were 

considered: percentage of uniquely mapped reads, average mapped read length, number of 

splices, mismatch rate per base, percentage of multi-mapped reads, percentage of reads mapped 

to too many locations, percentage of unmapped reads due to too many mismatches, percentage of 

unmapped reads due to reads being too short, and percentage of unmapped reads due to other 

reasons. Samples were clustered across these quality-control metrics using principal-component 

analysis, which revealed no outlier samples.  

For whole transcriptome sequencing analyses, differential gene pathway expression was 

evaluated with gene set enrichment analysis (GSEA) using the cancer hallmark gene sets from 
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the Molecular Signatures Database (16) at https://cloud.genepattern.org/ with upper quantile 

normalized TPM values and 1,000 gene set permutations. In addition, single-sample GSEA 

(ssGSEA) (17) was performed to generate nonparametric gene set scores for individual samples. 

Tumor immune cell composition was determined with the CIBERSORTx deconvolution 

algorithm, (18) inputting the RNA-seq TPM matrix for the cohort and using relative mode on the 

LM22 gene set with quantile normalization disabled, 1,000 permutations, and B mode batch 

correction to correct for the batch differences between the RNA-seq data in this study and the 

LM22 signature, which was derived from microarray data. Tumor infiltrating lymphocytes 

(TILs) were defined as T cells, NK cells, B cells, and plasma cells identified by  

CIBERSORTx. (18) 
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