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ABSTRACT
Background  Adaptive CD19-targeted chimeric antigen 
receptor (CAR) T-cell transfer has become a promising 
treatment for leukemia. Although patient responses 
vary across different clinical trials, reliable methods to 
dissect and predict patient responses to novel therapies 
are currently lacking. Recently, the depiction of patient 
responses has been achieved using in silico computational 
models, with prediction application being limited.
Methods  We established a computational model of CAR 
T-cell therapy to recapitulate key cellular mechanisms and 
dynamics during treatment with responses of continuous 
remission (CR), non-response (NR), and CD19-positive 
(CD19+) and CD19-negative (CD19−) relapse. Real-time 
CAR T-cell and tumor burden data of 209 patients were 
collected from clinical studies and standardized with 
unified units in bone marrow. Parameter estimation was 
conducted using the stochastic approximation expectation 
maximization algorithm for nonlinear mixed-effect 
modeling.
Results  We revealed critical determinants related to 
patient responses at remission, resistance, and relapse. 
For CR, NR, and CD19+ relapse, the overall functionality of 
CAR T-cell led to various outcomes, whereas loss of the 
CD19+ antigen and the bystander killing effect of CAR T-
cells may partly explain the progression of CD19− relapse. 
Furthermore, we predicted patient responses by combining 
the peak and accumulated values of CAR T-cells or by 
inputting early-stage CAR T-cell dynamics. A clinical trial 
simulation using virtual patient cohorts generated based 
on real clinical patient datasets was conducted to further 
validate the prediction.
Conclusions  Our model dissected the mechanism behind 
distinct responses of leukemia to CAR T-cell therapy. This 
patient-based computational immuno-oncology model can 
predict late responses and may be informative in clinical 
treatment and management.

INTRODUCTION
By modifying autologous T-cells to express a 
chimeric antigen receptor (CAR)-targeting 
CD19 antigen on B-cells, anti-CD19 CAR 
T-cell therapy has become a promising immu-
notherapy for B-cell acute lymphoblastic 
leukemia (B-ALL).1–3 However, clinical B-ALL 

cases have demonstrated stochastic responses 
and non-response (NR) to CAR T-cell 
therapy.4 Continuous/complete remission 
(CR) is achieved in 70%–90% of pediatric and 
adult patients, whereas long-term studies have 
shown that 30%–60% of patients encounter 
either CD19-positive (CD19+) or CD19-
negative (CD19−) relapse.5 Although various 
CAR T-cell products and combinational ther-
apies have been tested in clinical trials to 
improve patient response,5 6 numerous ques-
tions remain and the need persists to system-
atically understand the causes of the varied 
therapeutic responses. Thus, new clinical 
models that can predict patient responses to 
CAR T-cell treatment is critical for screening 
the most effective treatment protocol for 
individual patients.

Recently, computational models, based 
on empirical rationales and mathematic 
simulations with input of clinical data, have 
provided valuable tools for in silico and 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Anti-CD19 chimeric antigen receptor (CAR) T-cell 
therapy has become a promising treatment for leu-
kemia, but patient responses vary across different 
clinical trials, illustrating the need for reliable meth-
ods to dissect and predict patient responses.

WHAT THIS STUDY ADDS
	⇒ This study provides a new computational immuno-
oncology model of CAR T-cell therapy to predict 
late responses from early-stage clinical data, and 
reveals key determinants leading to remission, re-
sistance, and relapse responses.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ We provide a precision medicine tool to dissect and 
predict leukemia patient responses to CAR T-cell 
therapy that may be informative in personalized 
clinical treatment and management.
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systematical analysis of key biological mechanisms and 
patient responses in cancer immunotherapy.7 8 Up-to-
date computational modeling of CAR T-cell therapy 
are in the early stages of development, with applica-
tions of model-informed response prediction still being 
limited. For example, a multiscale physiological-based, 
pharmacokinetic-pharmacodynamic model has been 
developed for a quantitative study of the relationship 
between CAR-affinity, antigen abundance, tumor cell 
depletion, and CAR T-cell expansion using data collected 
from xenograft mouse models.9 Other approaches have 
focused on modeling factors underlying CAR T-cell 
dynamics, such as how ecological dynamics that regu-
late CAR T-cells explain expansion10 and exhaustion,11 
signaling-induced cell state variability,12 and CAR T-cell 
expansion owing to lymphodepletion and competi-
tive growth between CAR T-cells and normal T-cells.13 
Recently, Liu et al developed a model to characterize 
clinical CAR T-cell kinetics across response statuses, 
patient populations, and tumor types, but only in a 
retrospective manner.14 However, these computational 
models typically fail to provide a collective analysis 
and effective interpretation of clinical trial data from 
different clinical studies to reveal the key cellular mech-
anisms underlying the heterogeneous patient outcomes 
observed in different clinical trials. Critically, a clinical 
data-based prognostic model that can predict patient 
responses to CAR T-cell treatment at an early stage is 
largely absent.

In this study, we developed a mathematical frame-
work of CAR T-cell therapy structured with a matrix of 
ordinary differential equations for a quantitative study 
and in silico modeling of key biological mechanisms in 
CAR T-cell therapy, such as leukemia cell growth and 
apoptosis, CAR T-cell activation, expansion, cytotoxic 
efficiency, and CD19 antigen-mediated relapse mecha-
nisms. After calibration and validation with clinical data 
from 209 leukemia patients, our computational model 
revealed key determinants that depicted the heteroge-
neous clinical responses between the responders, non-
responders, and patients with CD19+/CD19− relapse. 
Clinical trial simulation is used to study the effects of 
a therapy in virtual patient cohorts using mathematical 
models of physiological systems, which, to some extent, 
enlarges sampling for clinical trials and applies a full 
range of mechanistic testing.15 16 Incorporating this 
concept, we performed a clinical trial simulation of CAR 
T-cell therapy using virtual patient cohorts generated 
based on real clinical patient datasets. It was demon-
strated with the input of early-stage clinical data that 
our model successfully predicted the late therapeutic 
outcomes of most patients under CAR T-cell treatment, 
which may be informative in clinical therapy and lead 
to a more customized and targeted treatment with supe-
rior outcomes.

METHODS
Model construction
CD19+ B-ALL Cell
It is assumed that the proliferation of CD19+ B-ALL cell 
subjects to logistic growth,17 and they are eliminated by 
activated CAR T-cells as follows:

	﻿‍
dnP
dt = rP

(
1 − nP

nC

)
nP − e nP

nP+KP
nTA‍� (1)

where nP (P represents positive) is the number of CD19+ 
B-ALL cells, nC is the carrying capacity of B-ALL cells in 
the tumor microenvironment, nTA is the number of acti-
vated CAR T-cells, and e is their killing rate. The efficacy 
of the elimination of B-ALL cells is based on Michaelis-
Menten kinetics with a Michaelis constant, KP, denoting 
the saturation effect from B-ALL cells to killing efficacy. 
Among the CAR T-cell therapy outcomes, CR is defined 
as a decrease in bone marrow tumor burden that remains 
below 5%, whereas for NR cases, the tumor burden 
increases without control.

CAR T-cell activation
CAR T-cells kill B-ALL cells after being activated by CD19+ 
B-ALL cells from an initial non-activated status. The 
generation of activated CAR T-cell can be expressed as 
follows:

	﻿‍
dnTA

dt = rTA
nP

nP+Kr
nTA + kA

nP
nP+KA

nTN − lTAnTA‍� (2)

where rTA is the growth rate of activated CAR T-cells, 
kA is the activation rate from initial non-activated CAR 
T-cells, nTN is the number of non-activated CAR T-cells, 
and lTA is the apoptosis rate of activated CAR T-cells. The 
growth and activation rates of CAR T-cells are affected by 
CD19+ B-ALL cells with saturation constants Kr and KA, 
respectively.

Thus, the variation of non-activated CAR T-cell can be 
expressed as follows:

	﻿‍
dnTN

dt = −kA
nP

nP+KA
nTN − lTNnTN‍� (3)

where the first term represents the conversion to acti-
vated status, and lTN is the apoptosis rate of non-activated 
CAR T-cells.

CD19+ and CD19− relapse
Relapse is defined as the bone marrow tumor burden 
increasing above 25% within 2 years after initially 
decreasing below 5%.18 In CD19+ relapse, CD19 anti-
gens are still present on the surface of B-ALL cells and 
can be detected using flow cytometry; thus, the model of 
CD19+ relapse can still be described by equations (1)–(3). 
However, the response of CD19+ relapse is different from 
that of CR, and the key mechanism lies in the poor func-
tion (expansion, cytotoxicity, and persistence) of CAR 
T-cells.19 For CD19+ relapse patients, CAR T-cell parame-
ters in the model, such as the growth, killing, activation, 
and apoptosis rates, should be inferior to those of CR 
patients.20

In CD19− relapse, CD19 antigen absent B-ALL cells exist, 
causing tumor cells to evade CAR-mediated recognition 
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and clearance irrespective of CAR T-cell persistence.5 The 
mechanism of CD19 loss is attributed to immune pres-
sure selection (CD19-negative tumor cells have existed 
before CAR T-cell therapy) and CD19 gene mutation (eg, 
alternative slicing with loss of exon 2).21 In CD19− relapse, 
although CAR T-cells cannot eliminate CD19− tumor cells 
through antigen recognition, activated CAR T-cells can 
mediate tumor lysis against the antigen-negative fraction 
in an antigen-independent, cell-cell contact-mediated 
manner in the vicinity of the target cells, known as the 
bystander killing effect.22 Thus, the variation of CD19− 
tumor cells can be expressed as follows:

	﻿‍
dnN
dt = rN

(
1 − nN

nC

)
nN + kmnP − e

kb

nN
nN+KN

nTA‍� (4)

where nN (N represents ‘negative’) is the number of 
CD19− tumor cells, km is the mutation factor causing CD19 
loss from CD19+ B-ALL cells, kb is the bystander killing 
scaling factor to the CD19+ killing efficacy, and KN is the 
saturation constant depicting the effect of bystander 
killing on CD19− B-ALL cells.

Collecting and processing clinical data
Real-time data of CAR T-cells and tumor burden, 
including the information of 209 patients, were collected 
from clinical studies.20 23–31 For some studies, clinical 
data are available on individual patients; however, for 
other studies, individual data had been preprocessed 
and only statistical values such as medians were provided. 
Thus, we referred to one piece of available clinical data 
(containing one or several individuals) as a group. The 
reliability of the calibration process and the rationality of 
the computational model are maintained since statistical 
values were regarded as representative individuals. After 
summarizing the data in references, we had 32 groups 
(14 for CR, 7 for NR, 7 for CD19+ relapse, and 4 for CD19− 
relapse) including the clinical information of 209 individ-
uals (148 for CR groups, 24 for NR groups, 20 for CD19+ 
relapse groups, and 17 for CD19− relapse groups) (online 
supplemental tables S1–4). After merging individual data 
into groups, we converted data from peripheral blood to 
bone marrow and unified the units of B-ALL cells and 
CAR T-cells. Details can be found in online supplemental 
methods.

Parameter estimation
Parameter estimation at population (based on fixed 
effects) and individual (based on random effects) levels 
were conducted using the stochastic approximation expec-
tation maximization (SAEM) algorithm for nonlinear 
mixed-effect modeling (NLME) using the MonolixSuite 
(version 2020R1, Lixoft, France) software. The Monolix-
Suite algorithm ensures repeatability and consistency in 
multiple fits. The estimated population level-parameters, 
initial values, and individual level-parameters related 
to CAR T-cells and tumor cells of different responses 
are listed in online supplemental table S5 and S6. We 
conducted identifiability analysis to evaluate the reli-
ability of parameter estimation. Structural identifiability 

was accessed using the Structural Identifiability Toolbox 
(https://maple.cloud/app/6509768948056064) based 
on the SIAN (Structural Identifiability ANalyser) algo-
rithm.32 The outputs indicated that all the parameters are 
globally identifiable. Practical identifiability analysis was 
based on correlation matrices33 34 obtained from Fisher 
information using Monolix. The maximal correlation 
coefficients of different parameters are summarized in 
online supplemental figure S1. The highest correlation 
coefficient was approximately 0.8 (not close to 1), exhib-
iting good identifiability.35

Generating virtual patient cohorts
We first confirmed that the clinical parameters could be 
largely fitted into Gaussian distribution (online supple-
mental figure S2). The parameters of virtual patient 
cohorts were thus generated in adherence to Gaussian 
distribution with mean value μ equaling the population 
level-parameters (online supplemental table S5) of CR, 
CD19− relapse, CD19+ relapse, and NR patients. The 
rationality was confirmed as the mean of the Gaussian 
distribution of virtual patients was close to the mean 
of the Gaussian distribution of clinical patients (online 
supplemental figure S2). The SD was 1/3 μ, ensuring the 
parameters are larger than 0.

For each population level-parameter of each response, 
we generated 400 sets of parameters for CR (online 
supplemental table S7), CD19− relapse (online supple-
mental table S8), CD19+ relapse (online supplemental 
table S9), and NR (online supplemental table S10), 
respectively.

Statistics
Data were first analyzed for normality and then compared 
with unpaired Student’s t-test or Welch’s t-test by using 
Prism V.8.4.3 (GraphPad). *p<0.05, **p<0.01, and 
***p<0.001 were considered significant. The results, 
including the error bars in the graphs, were provided as 
the mean±SE of mean (SEM) or boxplots with whiskers 
of min-max values. Details are reported in each figure 
caption.

RESULTS
A computational model of CAR T-cell immunotherapy
To construct a computational model of CAR T-cell 
therapy that reproduces the pathophysiological processes 
and immunological interactions, we framed a matrix of 
ordinary differential equations and calibrated the model 
as defined in the Methods section. To fit and calibrate 
our model, we searched and collected clinical data of 
209 B-ALL patients from ten clinical trials of anti-CD19 
CAR T-cell therapies and sampled them into 32 groups 
(online supplemental tables S1–4). The clinical data were 
assigned into different patient cohorts, that is, CR, NR, 
CD19+ relapse, and CD19− relapse (figure  1), based on 
flow cytometry and quantitative PCR (qPCR) monitoring 
of CAR T-cells in the blood, as well as morphological 
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testing of leukemia burden in the bone marrow. To mini-
mize the variation across different batches and clinical 
trials, we unified and transformed all the clinical data at 
a scale equivalent to the bone marrow level. Model fitting 
and parameterization processes were provided accord-
ingly. For a dataset including different individuals, SAEM 
first fits the data as a group and estimates parameters on 
population level (population-level parameters). Random 
effect is then adopted to estimate the parameters of 
each individual (individual-level parameters) based on 
population-level parameters.

We first calibrated the proposed computational model 
with clinical data of CAR T-cell and tumor burden of 148 
CR patients (online supplemental table S1 and figure S3), 
and simulated the dynamic behaviors of CAR T-cells and 
tumor cells during the treatment. After being activated 
by the CD19+ B-ALL cells, CAR T-cells rapidly expanded 
and peaked within the first 1–2 weeks, then gradually 
decreased after tumor cells were rapidly depleted. The 
results showed a strong correlation between clinical statis-
tics and simulation data (figure 2A,B). We found that the 
peak value of CAR T-cells during treatment increased as 
initial tumor burden increased, which was consistent with 
clinical observation (figure 2C). This is largely because of 
the rapid in vivo CAR T-cell expansion stimulated by CD19+ 
tumor cells as verified through the real-time simulation 
results with increasing initial tumor burden (figure 2D). 
Similar correlation was observed between the peak value 
and activation rate of CAR T-cells (figure 2E). Moreover, 
the day when the CAR T-cells peaked correlated with the 
day when the patients achieved minimal residual disease 
(tumor burden <0.01%) (figure 2F).

In parallel, we calibrated the model with clinical data 
of 24 NR patients to model the scenario of NR, which 
again confirmed its validity (figure 3A,B, online supple-
mental figure S4 and table S2). For instance, significant 

differences were reproduced as observed in CR and NR 
patients in terms of CAR T-cell and tumor cell dynamics 
(figure  3C). In particular, the peak value and AUC28 
(area under the curve from days 0 to 28, a common clin-
ical marker to evaluate CAR T-cell expansion and func-
tion) of CAR T-cells in NR patients were less than those 
of CAR T-cells in CR patients at population level. Similar 
trends were further confirmed at individual level through 
experimental and simulation data (figure 3D,E). Notably, 
although the inherent heterogeneity in clinical patient 
groups led to several extreme values and caused the 
overlap between confidence intervals, the difference of 
the absolute magnitudes between the CR and NR groups 
was statistically significant. To further understand such 
differences, we conducted a sensitivity analysis of popula-
tion level parameters and found that those related to CAR 
T-cell functionality, such as growth rate rTA, killing rate e, 
activation rate kA, and apoptosis rate lTA, critically influ-
ence CAR T-cell therapy outcomes (online supplemental 
figure S5). Our model indicated that the median values 
of these factors significantly differed between CR and NR 
patients (figure 3F–I). CAR T-cell in CR patients, but not 
those in NR patients, generally have higher growth rate 
rTA, killing rate e and activation rate kA but lower apoptosis 
rate lTA, suggesting an impaired CAR T-cell functionality 
in NR patients. These results together demonstrate the 
capability of our computational model to recapitulate the 
clinical dynamics during CAR T-cell therapy.

In silico modeling reveals distinct CAR T-cell patterns in 
CD19+ and CD19− relapse scenarios
In addition to those achieving CR and showing NR, some 
patients showed either CD19+ or CD19− relapse after CAR 
treatment (6). To understand the heterogeneity between 
these two main relapse scenarios, we recalibrated the 
model with respective clinical data (figure 4A,B, online 

Figure 1  A schematic showing the key cellular components and their dynamic interactions in the computational CAR T-cell 
therapy model. Based on the computational model, four types of responses (bottom panel): CR, NR, CD19+ relapse, and CD19− 
relapse can be recapitulated with the outputs of dynamics of CAR T-cells and B-ALL cells. CAR, chimeric antigen receptor; B-
ALL, B-cell acute lymphoblastic leukemia; CR, continuous remission; NR, non-response.
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supplemental figures S6&S7A–C and tables S3&S4). As 
illustrated by the individual level-calibration results, our 
computational model successfully mimicked the relapse 
progress at different days of relapse (figure  4C,D). 
Furthermore, we found that correlation exists between 
the day of CD19+ relapse and AUC28 of CAR T-cell 
(online supplemental figure S7D), whereas this is not the 
case for CD19− relapse scenario (online supplemental 
S7E). To better explain this distinct pattern, we defined 
CAR T-cell function factor FT as follows:

	﻿‍ FT = rTA×e×kA
lTA ‍� (5)

to quantitatively describe the overall CAR T-cell func-
tionality consisting of growth, cytotoxicity, and persis-
tence where rTA is the growth rate, e is the killing rate, kA 
is the activated rate, and lTA is the apoptosis rate of CAR 
T-cell. These four parameters included in our differen-
tial equations model depict the four fundamental phys-
iological processes of CAR T-cells. All showed abilities 
in differentiating response and NR groups (figure 3F–I) 

with high sensitivity to the model (online supplemental 
figure S5) and no single parameter could differentiate all 
four scenarios (online supplemental figure S8), making it 
reasonable to combine them and synergistically describe 
the functions of CAR T-cells among different responses. 
For clarity, all defined factors and prediction methods in 
the paper are summarized in online supplemental table 
S11. Simulation results demonstrated that the increase 
of FT extended the day of CD19+ relapse (figure 4E), but 
not that of CD19− relapse (online supplemental figure 
S7F). Such difference can be partially explained by 
the presence of CD19− B-ALL cells before infusion of 
CAR T-cells and the following selective pressure by CAR 
T-cells.5 In addition, the genetic mutation causing loss 
of surface expression of CD19 and the bystander killing 
of CAR T-cells may further determined the progression 
of CD19− B-ALL cells.21 22 To dissect the CD19− relapse 
scenario, we integrated these two key effects in our 
model and defined the negative relapse factor FNegR as 
follows:

Figure 2  In silico analysis of CR in CAR T-cell therapy. (A, B) Calibration results of CAR T-cell (A) and tumor burden (B) of 
remission patients with median (solid line) and 95% prediction interval (color bands). The dots represent the experimental 
data. Prediction interval was automatically generated using the predefined algorithm of Monolix software during calibration. 
(C) Relationship between tumor burden and peak value of CAR T-cells and (D) corresponding real-time results. Simulation 
results of different patient groups were calculated and fitted with dashed lines, and compared with experimental results in (D). 
The band in (C) represents the 95% confidence interval (the same below). (E, F) Relationships between the activation rate and 
peak value of CAR T-cell (E), and day of CAR T-cell at peak and MRD− day (F). CAR, chimeric antigen receptor; CR, continuous 
remission; MRD, minimal residual disease.
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	﻿‍ FNegR = kmkb‍� (6)

where km is the mutation factor considering the rate of 
gene mutation like alternative slicing with loss of exon 
2 and the probability of lineage switch, and kb is the 
bystander killing scaling factor depicting the killing effi-
cacy of CAR T to CD19− tumor cells comparing with to 
CD19+ tumor cells. Both parameters are positively related 
to the progression of CD19− relapse according to their 
definitions in equation 4. As a result, FNegR demonstrated a 
high correlation with the day of CD19− relapse, confirming 
its validity in depicting the mechanism of CD19− relapse 
(figure  4F). Collectively, our results reveal a distinct 
pattern of relapse across the CD19+ and CD19− scenarios.
Key determinants underlie heterogeneous responses to CAR 
T-cell therapy
To understand the key factors determining the heteroge-
neous responses to CAR T-cell therapy, we systematically 

and comparatively analyzed the clinical data, including 
the initial tumor burden and peak value of CAR T-cell in 
CR, NR, CD19+ relapse, and CD19− relapse patients after 
CAR T-cell therapy. No significant difference (p≥0.398) 
was observed in initial tumor burden among patients with 
different responses (online supplemental figure S9A), 
suggesting that using initial tumor burden alone cannot 
determine CAR T-cell response. Next, we calculated the 
peak value and AUC28 of CAR T-cells for the four types 
of responses at the population level and found that CR 
and CD19− relapse patients demonstrated higher values 
than did CD19+ relapse patients, whereas NR patients 
exhibited minimum values (figure  5A). We then tuned 
the values of the individual parameters (rTA, e, kA, and lTA) 
of CAR T-cell function factor FT in silico and found that, 
as expected, the FT parameter regulated the therapeutic 
effect of CAR T-cell treatment (online supplemental 

Figure 3  Comparative analysis of CR and NR patients in silico. (A, B) Calibration results of CAR T-cell (A) and tumor burdens 
(B) of NR patients with median (solid line) and 95% prediction interval (color bands). The dots represent the experimental data. 
(C) Variations of CAR T-cell and tumor burden of CR and NR patients. (D, E) Comparisons of the peak value (D) and AUC28 
of CAR T-cell (E) between CR and NR patients. Bars represent simulated results and dots are experimental results. Error bars 
represent means with 95% confidence interval. (F–I) The median growth rate of CAR T-cells of CR patients is 1.38 per day, 
comparing with 1.02 per day of NR (F); the killing rate is 24.25 per day vs 8.03 per day (G); the activation rate is 0.70 day per day 
vs 0.32 per day (H); and the apoptosis rate is 0.12 per day vs 0.26 per day (I). Whiskers of boxplots represent min-max values. 
P values were calculated using Student’s t-test or Welch’s t-tests. *p<0.05, **p<0.01. CAR, chimeric antigen receptor; CR, 
continuous remission; NR, non-response; AUC28, area under the curve from day 0 to 28.
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figure S9B,C). These results collectively indicated the 
potential of FT in differentiating these outcomes, such 
as CR, CD19+ relapse and NR after CAR T-cell therapy, 
although this was not the case for CD19− relapse 
(figure 5B). Furthermore, we scaled the population-level 
calibrated parameters in FT of different responses (±25% 
for CR, ±10% for CD19+ relapse, and ±5% for NR), which 
again confirmed the usefulness of FT (figure 5C). Based 
on the clinical response and the distribution of FT of 
patients (figure 5B), the probability distribution of FT of 
different responses were fitted with the MATLAB Distri-
bution Fitter Toolbox (online supplemental figure S9D). 
According to the probability distribution, the occurrence 
probabilities of CR, CD19+ relapse, and NR at certain FT, 
that is, Pi (FT) can be determined as follows:

	﻿‍
Pi

(
FT

)
=

pi
(
FT

)
∑

j=CR, CD19+, NR
pj
(
FT

) ,
(
i = CR, CD19+, NR

)

‍�
(7)

where p is the probability distribution of different 
responses (online supplemental figure S9C). We found 
that as FT increased, the most likely response to CAR 
T-cell therapy changed from NR to CD19+ relapse, and 

further to CR (figure 5D). In addition, the distribution of 
scaled FT (figure 5C) fell into the range of corresponding 
response (figure 5D). Similarly, as FT cannot determine 
the characteristics of CD19− relapse, we found instead 
that FNegR determined the efficacy of CAR T-cell therapy 
in the scenario of CD19− relapse (figure 5E) and in silico 
experiments of changing FNegR (by scaling km and kb) 
confirmed such observation (figure 5F). Collectively, our 
model helped to identify critical determinants underlie 
heterogeneous responses to CAR T-cell therapy.

In silico prediction of late response at early stage of CAR 
T-cell treatment
Prediction of the late response of patients to CAR T-cell 
therapy during early treatment stage will greatly improve 
patient outcomes by guiding the treatment regimen that 
follows, especially for patients with acute disease progres-
sion.36–38 Having demonstrated that our computational 
model accurately recapitulated the cellular dynamics of 
CAR T-cell therapy, we found that the response can be 
differentiated by the actual function level and dynamics of 
CAR T-cells in individual patients. Thus, we hypothesized 

Figure 4  Comparative analysis of CD19+ and CD19− relapse to CAR T-cell therapy in silico. (A, B) Calibration results of CAR 
T-cells of CD19+ (A) and CD19− (B) relapse with median (solid line) and 95% prediction interval (color bands). (C, D) Individual 
fitting results of tumor burden of CD19+ (C) and CD19− (D) relapse. In (A–D), the dots represent the experimental data and the 
lines represent the fitted curves. (E) Variation of the day of CD19+ relapse as CAR T-cell function factor FT changes. (F) Variation 
of the day of CD19− relapse as negative relapse factor FNegR changes. The band in (E, F) represents the 95% confidence interval. 
CAR, chimeric antigen receptor.
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that such responses can be predicted using our compu-
tational immuno-oncology model with input of clinically 
measurable and available patient information related to 
CAR T-cell dynamics, such as the peak value and AUC7 
(area under the curve from days 0 to 7) of CAR T-cells, at 
the early stage of CAR T-cell treatment.

We first mapped the real-time results of the four typical 
patient groups with different responses (figure  6A). 
Unexpectedly, neither the peak value nor the AUC7 
index alone demonstrated statistical differences among 
different groups, implicating that a single parameter is 
not proficient for clinical prediction (online supple-
mental figure S10). Thus, we considered combining these 
two indices and defined the prediction factor FP as follows:

	﻿‍
FP = log2

(
npeak × nAUC7

)
‍� (8)

where npeak is the peak value of CAR T-cell and nAUC7 
is its AUC7 value. For different responses, we calculated 
FP based on calibrated results of individual patients and 

found that FP showed statistical significance across the CR, 
NR, and CD19+ relapse groups (figure 6B). The results 
showed that early-stage CAR T-cell dynamics of CR and 
CD19− relapse within the first month were similar in terms 
of the peak value, AUC7 of CAR T-cells, and FP comparing 
with NR and CD19+ relapse. Considering the similarity of 
CAR T-cell dynamics at the early stage between CR and 
CD19− relapse, these two response groups were combined 
at this stage of the prediction and referred to as the 
CR&CD19− relapse response.

To further validate the prediction ability of FP, for 
CR&CD19− relapse, we selected seven patients to calibrate 
the relationship between FP and the response, and four 
(two CR and two CD19− relapse) for prediction; for NR 
and CD19+ relapse, we selected five patients for calibra-
tion and two for prediction. The probability distributions 
of FP of different responses were fitted using the MATLAB 
Distribution Fitter Toolbox (figure  6C). Based on the 
probability distribution, the occurrence probabilities of 

Figure 5  Key determinants in regulating CAR T-cell therapy response. (A) Comparisons of the peak value and AUC28 of CAR 
T-cells, and (B) CAR T-cell function factors FT across patients of different responses. Error bars in B represent mean±SE of mean 
(SEM). (C) Variations of tumor burden as FT changes. (D) Variation of the response probability as FT changes (left y-axis) and 
tumor burden under FT in (C) (right y-axis). For a specific FT, the response probabilities of different responses are represented 
by different colors (blue for NR, red for CD19+ relapse, and orange for CR) on the direction of y-axis; the sum of the response 
probabilities is 100%. As FT changes, areas with different colors are generated. (E) Variations of CD19− tumor burden as the 
bystander scaling factor kb and mutation factor km change. (F) Variations of CD19− tumor burden as the negative relapse 
factor FNegR changes. P values were calculated using Welch’s t-test. *p<0.05, ***p<0.001. CAR, chimeric antigen receptor; CR, 
continuous remission; NR, non-response; AUC28: area under the curve from days 0 to 28.
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each response at certain FP, that is, Pi (FP) was be deter-
mined as follows:

	
‍
Pi

(
FP
)

=
pi
(
FP
)

∑
j=CR& CD19-, CD19+, NR

pj
(
FP
) ,
(
i = CR& CD19-, CD19+, NR

)

‍
� (9)

where p is the probability distribution of different 
responses. We found that as FP increased, the most likely 
response to CAR T-cell therapy changed from NR to CD19+ 
relapse, and then to CR&CD19− relapse (figure 6D). The 
FP of each patient was calculated for prediction and the 
corresponding probabilities of different responses can be 
determined (figure 6D). The FP of the two NR patients 
was 15.4 and 7.7 and the predicted probabilities of NR 
were 26.7% and 76.7%; the FP of the two CD19+ relapse 
patients was 14.6 and 15.5 and the predicted probabili-
ties of CD19+ relapse were 53.3% and 55.3%; the FP of 
the two CD19− relapse patients was 18.1 and 19.3 and the 
predicted probabilities of CR&CD19− relapse were 46.3% 
and 68.9%; and the FP of the two CR patients was 21.9 
and 23.2 and the predicted probabilities of CR&CD19− 
relapse were 97.2% and 99.5%.

Because FP prediction depended on the peak value of 
CAR T-cells, which requires clinical monitoring of patients 
up to 2 weeks, we aimed to predict patient outcomes with 
only input of the first 7-day clinical data of CAR T-cell 

dynamics and the initial tumor burden of a patient. We 
then calibrated the computational model based on the 
early-stage CAR T-cell dynamics (equations 1–3) and 
obtained the subsequent time-series results of CAR T-cell 
and tumor cells (figure 7A–C). To validate the feasibility 
of the proposed method, we first tested one representa-
tive patient for different response group and found that 
the responses of clinical patient cohort can be correctly 
predicted (figure 7A–C).

To test the accuracy of our prediction method on a 
larger scale with higher reliability, we generated clinical-
derived virtual patient cohorts for a clinical trial simula-
tion to complement the present clinical data which is of 
small quantity and density. In general, 400 sets of virtual 
patient data points for CR, CD19− relapse, CD19+ relapse, 
and NR cohorts were generated separately (online supple-
mental tables S7–10), based on Gaussian distribution of 
the population level parameters calibrated from present 
clinical patient cohort data (online supplemental table 
S5). To validate the applicability of those virtual patient 
cohorts, we first compared the peak values (figure  7D) 
and AUC28 (figure  7E) of CAR T-cells between virtual 
and clinical patient cohorts of different responses 
(figure 5A). The results showed good consistency in both 
absolute and relative values, indicating the quantity and 
quality of virtual patient cohorts matched those of the 

Figure 6  Prediction of CAR T-cell therapy response based on the peak value and AUC7 of CAR T-cells. (A) Variations of 
CAR T-cell number of typical patient groups with different responses (group 8 of CR, group 1 of CD19− relapse, group 7 of 
CD19+ relapse, and group 1 of NR). (B) Comparisons of the response prediction factor FP. Error bars represent mean±SEM. 
(C) Probability density of different responses as FP changes. (D) Variations of response probability as FP changes. For a specific 
FT, the response probabilities of different responses are represented by different colors (blue for NR, red for CD19+ relapse, and 
orange for CR&CD19− relapse) on the direction of y-axis; the sum of the response probabilities is 100%. As FT changes, areas 
with different colors are generated. The blue, red, brown, and orange dots represent experimental results of NR, CD19+ relapse, 
CD19− relapse and CR patients, respectively, to validate prediction ability. P values were calculated using Student’s t-est or 
Welch’s t-test. *p<0.05, **p<0.01. CAR, chimeric antigen receptor; CR, continuous remission; NR, non-response; AUC7: area 
under the curve from days 0 to 7.
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clinical patients. We further calculated FT of virtual patient 
cohorts and found no significant differences between 
clinical patient cohorts and virtual patient cohorts 
(figure  7F), again confirming the usability of virtual 
patient cohorts. As a result, our clinical trial simulation 

with virtual patient cohorts successfully reproduced real-
time results of corresponding clinical patient cohorts and 
predicted patient responses (figure 7G–I, online supple-
mental figure S11–14). Overall, our prediction method 
reached a prediction accuracy of 74.38% for a total of 

Figure 7  Prediction of patient responses to CAR T-cell therapy based on the CAR T-cell dynamics within first 7 days of 
treatment. (A–C) Prediction results based on clinical of CR (A), CD19+ relapse (B), and NR (C) of clinical patients. The minor 
graph in B shows CAR T-cell dynamics observed and predicted in the first 7 days in a smaller y-axis scale for better display. 
(D) Median peak value and (E) AUC28 of CAR T-cells of virtual cohort patients and comparisons with clinical cohort patient data. 
(F) CAR T-cell function factors of virtual patients and comparisons with clinical data. No significant differences between virtual 
and clinical patients of the same response, and between CR and CD19− relapse patients were observed. Whiskers of boxplots 
represent min-max value. (G–I) Real-time prediction results based on virtual patient cohorts. The prediction method was used 
for the CR (G), CD19+ relapse (H), and NR (I) of CAR T-cell therapy, as observed. (J) Overall prediction accuracy (74.38%). 
(K) Prediction accuracy of different responses: 65.63% for CR and CD19- relapse, 75.50% for CD19+ relapse, and 90.75% for 
NR. (L) Threshold values of initial CD19− tumor burden to induce CD19− relapse. Dotted lines indicate the values of initial CD19− 
tumor burden with the occurrence probability (25, 50, and 75%) of CD19− relapse obtained from population level statistics. 
P-values were calculated using Student’s t-test or Welch’s t-test. ***p<0.001. CAR, chimeric antigen receptor; CR, continuous 
remission; NR, non-response; AUC28: area under the curve from days 0 to 28.
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1600 virtual patients with respective prediction accuracy 
of 65.63% (525/800) for CR&CD19− relapse, 75.50% 
(302/400) for CD19+ relapse, and 90.75% (363/400) for 
NR (figure 7J,K). For CR and CD19− relapse, CAR T-cell 
dynamics at early stage are similar; thus, their responses 
were combined as CR&CD19− relapse (figure 7A, online 
supplemental figure S15). The high prediction accuracy 
of NR can be partially explained by the lower differences 
between the predicted and observed values of FT and ΔFT 
(online supplemental figure S16).

To better understand the effect of clinical observation 
endpoint on the accuracy of our prediction method, we 
further generated the receiver operator characteristics 
(ROC) of different responses at various clinical timepoints 
(online supplemental methods and tables S12–14). The 
analysis suggested that as clinical observation extended, 
the sensitivity of prediction for CR&CD19− relapse 
decreased slightly and specificity increased, whereas the 
opposite occurred for CD19+ relapse. For NR, the predic-
tion results were stable as the clinical endpoint increased. 
Unlike CD19+ relapse, CR&CD19− relapse, and CR that 
had a similar early response, the unique dynamics of NR 
led to steady sensitivity and specificity in ROC.

To further differentiating CR and CD19− relapse 
patients in the group of CR&CD19− relapse response, we 
selected the initial CD19− tumor burden nN0 as an index 
to predict the occurrence of CD19− relapse (equation 4). 
Parameters designated to the model were based on the 
calibration of CR and CD19− relapse response combining 
with parameters related to CD19− relapse (online supple-
mental table S5). Based on the model including equation 
of CD19− relapse, the response varies from CR to CD19− 
relapse by increasing the initial CD19− tumor burden; 
therefore, its threshold value nN0T of each individual and 
population-level results with certain occurrence prob-
abilities to induce CD19− relapse could be determined 
(figure 7L, online supplemental figure S17). These results 
together confirm the prediction power of our computa-
tional CAR T-cell immuno-oncology model, which can 
provide guidance for clinical treatment and regimen.

DISCUSSION
Computational models of immunotherapy provide a valu-
able tool for in silico clinical modeling and patient strat-
ification.7 8 In this study, we constructed a mathematical 
model of the critical leukemia-immune interactions with 
clinical dataset, determined key factors effecting treat-
ment efficacy, and predicted patient response to CAR 
T-cell therapy with early-stage CAR T-cell dynamics data. 
We systematically explored dynamic interactions between 
B-ALL and CAR T-cells and found that CAR T-cell func-
tion index FT inferred patient outcomes ranging from 
CR, NR, to CD19+ relapse. Contrastingly, a negative 
relapse index FNegR, including the mutation rate and the 
bystander killing rate to CD19− B-ALL cells, determined 
the probability and day of relapse for CD19− relapse cases. 
Through the application of our computational model, we 

were able to define the prediction factor FP using early-
stage CAR T-cell expansion data including the peak and 
AUC7 values of adoptively transferred CAR T-cells. By 
introducing FT and FNegR, our model realized to systemat-
ically characterize heterogeneous responses and dissect 
underlying mechanisms, positioning it as a clinically rele-
vant, translationally innovative tool that impacts decision 
making. With our modeling approach, we were able to 
effectively predict CAR T-cell treatment outcomes for 
individual patients.

Most other data evaluation models rely on end-point 
data, often coinciding with, or even after, clinical 
outcomes. Importantly, our model predicted prognosis 
at early time points following infusion. Most current 
methods rely on the detection of certain prognostic 
biomarkers, for example, inducible COStimulator, 
CD27+PD-1–CD8+T cell population, lactate dehydroge-
nase, and C reactive protein.37 39–41 However, current 
biomarkers fail to accurately predict the prognosis of 
patients who underwent CAR T-cell therapy before clin-
ical endpoints are reached. With input of quantitative 
data available at early stage of treatment like the initial 
tumor burden, the peak value and first 7-day data of 
CAR T-cell, our prediction method provides insight into 
the actual bioactivity and functional competence of CAR 
T-cells soon after infusion. All these quantities used in 
our prediction method can be obtained from clinical 
practice by reliably measure sampling the bone marrow 
tissue and blood of patients, positioning it as a clinically 
relevant, translationally innovative tool that impacts 
decision making. Identifying contexts where CAR 
T-cells are performing suboptimally may permit person-
alized treatment and management, that is, inclusion 
of targeted biologics or checkpoint inhibitors to limit 
disease progression and amplify the overall immune 
response accordingly. In addition, because the model 
profiles the whole dynamics of disease progression like 
the date of reaching peak tumor burden, the estimated 
timetable will assist clinicians to design and adjust their 
treatment regimens accordingly. Based on the predicted 
long-term CAR T-cell dynamics, tumor burden progres-
sion and treatment outcome, for patients with inferior 
responses (NR or relapse), further treatment such as 
allogeneic hematopoietic stem cell transplantation 
therapy,42 or a second-dose CAR T-cell infusion43 can 
be considered and prepared in advance for the relapse 
or refractory patients after the first CAR T-cell therapy.

As our computational immune-oncology model 
involves multiple parameters in several ordinary differ-
ential equations to synthetically depicts the fundamental 
physiological processes during CAR T-cell therapy, a 
proper parameter estimation based on measured clin-
ical data is an important step toward building up an 
accurate and reliable prediction model. In study, we 
conducted parameter estimation using standard NLME 
which is a particularly useful approach in settings where 
there are multiple parameter measurements involved. 
This parameter estimation took consideration of both 
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systematic and random effects, ensuring repeatability 
and consistency of the fitting results and thus reliability 
and reproductivity of the model. A larger dataset and 
more reasonable range of parameter supported by clin-
ical literatures will further improve the credibility of 
parameter estimation.

The accuracy and reliability of the prognostic model 
highly depend on the quantity and quality of clin-
ical data to establish and calibrate it. Computational 
models usually adopt clinical data from different liter-
atures acquired by different measuring methods (eg 
flow cytometry, qPCR, and morphological testing) of 
different biopsies took from different tissue samples 
(for example, saliva, peripheral blood, and bone 
marrow). These datasets are associated with large vari-
ance, making it difficult for model fitting using a single 
set of parameters that would work for all patients under 
different treatment conditions. Thus, unifying the data 
from different sources and formats before fitting in 
silico models is particularly important. Accordingly, we 
built up a unifying code to interpret the relationship 
between clinical data with different units coming from 
different body parts with assumptions13 and data.23 This 
unifying process of clinical data highlights a novel way 
to accurately recapitulate the patient/clinical process, 
which previous strategies are limited to offer. More-
over, the current model tried to fully use clinical data 
obtained from different trials with a uniform and 
reasonable standard, but it can be improved with more 
considerations of interpatient variability. For example, 
lymphodepletion pretreatment seems to affect CAR 
T-cell expansion44 and second-generation CAR T-cell 
products with CD28 or 4-1BB costimulatory domains 
exhibit differences in magnitude and persistence,45 
although both showed well treatment efficacy to B-ALL. 
Future extension of the computational model including 
these factors will develop its potential in exploring new 
insights.

Critically, limited availability of clinical data prevents 
large-scale validation of computational models including 
ours. We, therefore, conducted clinical trial simulation 
studies expanding the patient cohorts from 209 to 1600 
individuals. The generation of virtual patient cohorts was 
based on calibration results of clinical patient cohorts, 
and the similarity of these two cohorts was carefully 
confirmed, both ensuring the credibility of clinical trial 
simulations. The proposed methods to unify and expand 
clinical data have been proven to be practical and feasible, 
but it has to be admitted that original clinical data with 
large amount and uniformed standard are optimal,46 
necessitating collaboration with clinicians on designing 
the scheme of data collection before the start of clinical 
trials for a better validation and translation of the model.

Relapse scenarios, which were less discussed in current 
computational models, were included in our model. 
Our simulation results demonstrated a prediction of the 
prognosis of CD19+ relapse based on early-stage CAR 
T-cell dynamics data, but not that of CD19− relapse. 

The clinical responses of CD19− relapse patients were 
found very similar to CR patients at the early stage of 
CAR T-cell treatment. In our model, the index of initial 
CD19− tumor burden demonstrated a good potential in 
predicting CD19− relapse. However, such index of CD19− 
tumor burden is not currently measured clinically, which 
if available could provide more sufficient information to 
calibrate our model for real-world clinical prediction. In 
addition, CD19− relapse-related clinical data of larger 
quantity and more types for different responses will 
enable a global model unifying all four responses together 
and contribute to a deeper insight into distinct responses 
and a better accuracy of prediction. Although it is clear 
that presence of CD19− tumor cell population caused the 
CD19− relapse47 and our model identified the potential 
threshold of the CD19− cell population for CD19− relapse, 
the mechanisms causing the loss of surface expression of 
CD19 remain poorly understood. Thus, more insightful 
studies about the mechanism of CD19− relapse will also 
enable us to include more factors in the model with 
improved knowledge to achieve a better description and 
prediction of CD19− relapse. At the present stage, the 
prediction of relapse of the model is mainly qualitative, 
providing the clinicians with a dichotomous answer. In 
the future, by introducing more kinds of clinical data 
and improving the structure of the model, an enhanced 
model capable of quantitively predicting the date of 
relapse is promising.

In addition to the direct interactions between CAR 
T-cell and B-ALL cell, microenvironmental cues, for 
example, immune cells like myeloid-derived suppressor 
cells, regulatory T-cells and tumor-associated macro-
phages, and their secreted immunosuppressive cyto-
kines in the bone marrow, may explain the distinct 
functionalities of CAR T-cell for patients with different 
response rates.48 As demonstrated by our recent 
studies,49 an in silico model of the heterogeneous 
tumor microenvironments would be particularly valu-
able for dissecting and screening of immunotherapies. 
Incorporation of these immune cell components into 
our computational immuno-oncology model may help 
dissecting out these immunological mechanics involved 
in the tumor microenvironment affecting treatment 
outcomes, although it is currently impractical owing 
to highly limited clinical data. Computational models 
were also applied to study cytokine release syndrome 
(CRS), an adverse side effect elicited by CAR T-cell 
therapy.50 51 However, most of existing CRS models lack 
clinical data and failed to dissect actual cellular factors 
affecting the severity of CRS and corresponding treat-
ments. We believe that modeling of cytokines with our 
computational CAR T-cell therapy model would help to 
determine the biological mechanisms and the risk to 
develop severer CRS and their potential relationships 
with the varied therapeutic outcomes.

In conclusion, we have established a computational 
immuno-oncology model of CAR T-cell therapy by reca-
pitulating key cellular dynamics observed in clinical 
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trials, revealed key determinants of treatment efficacy, 
and predicted patient outcomes with early-stage clin-
ical data. We believe that this patient-based computa-
tional platform can serve as precision medicine tool to 
aid clinicians with quantitative and reliable prognosis 
in early-stage of CAR T-cell therapy, thus contributing 
to personized treatment of leukemia patients with opti-
mized clinical outcomes.
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