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indicative of on-target drug effect (figure 4B). Flow cytom-
etry of the TME from PIK3CA H1047R tumors treated 
with Ccr2/5 inhibitor or inhibitor plus anti-PD-1 showed a 
decrease in Ccr2hi cells compared with either drug alone 
(figure 4C). Mice bearing PIK3CA H1047R tumors, when 
treated with Ccr2/5 inhibition in combination with anti-
PD-1 showed regression of tumors, which was not the case 
when treated with either alone (figure 4D). Targeting the 
myeloid microenvironment in PI3K-active tumors there-
fore sensitized these tumors to anti-PD-1.

DISCUSSION
We show that activation of PI3K signaling in tumor cells 
creates a TME characterized by increased representa-
tion of inhibitory CD45+ CD11b+ Ccr2hi myeloid cells, 
less CD8+ T cell infiltration after immunotherapy, and 
impaired response to immune checkpoint blockade. 
Although the role of PI3K signaling in tumor initiation is 
well established, we found a new role for PI3K signaling 
in creating an immunosuppressive TME. This suggests 
PI3K mutation is a potential biomarker of poor response 
to immunotherapy, and these findings provide a rationale 
for combination of PI3K inhibition with myeloid-targeting 
strategies to overcome immunotherapy resistance.

Figure 3  Myeloid cells from PIK3CA H1047R tumors are recruited by Ccl2 and inhibit CD8+ T cell proliferation. (A) Gene 
expression in control or PIK3CA H1047R MC38 cells in vitro. (B) Ccl2 transcript abundance after treatment with phospho-
inositol 3 kinase (PI3K) inhibitor LY294002 measured by quantitative PCR. Data are mean±SD. (C) Tumor volume over time 
for PIK3CA H1047R or control tumors with single-guide RNA (sgRNA) for Ccl2 or control guide growing in mice treated with 
programmed cell death protein 1 (PD-1) blockade. Data are mean±SEM; n=5 animals per group. (D) Proliferation of CD8+ 
splenocytes measured by cell trace violet after coculture for 3 days with bone marrow-derived dendritic cells (BMDCs), anti-
CD3, and CD45+ cells from control or PIK3CA H1047R tumors. Experimental design (left), representative histograms (center), 
and quantification (right). Data are mean±SD. (E) Proliferation of CD8+ splenocytes measured by cell trace violet after coculture 
for 3 days with BMDCs, anti-CD3, and F4/80+ or Ccr2hi populations sorted from PIK3CA H1047R tumor. Experimental 
design (left), representative histograms (center), and quantification (right). Data are mean±SD. *P<0.05; **p<0.01; ***p<0.001; 
****p<0.0001.
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We found that PI3K exerts an immune inhibitory effect 
by recruitment of a monocytic suppressive population 
marked by Ccr2. Ccr2-expressing cells have been impli-
cated in immune inhibition.33 These cells are the most 
differentially represented in single cell analysis of the 
myeloid microenvironment after immune checkpoint 
therapy, decreasing with a productive immunotherapy 
response.34 In the B16 melanoma mouse syngeneic 
transplantable model, GM-CSF recruited Cd11b+Ccr2+ 
monocytic cells to tumors and blocked CD8+ infiltra-
tion, limiting immune checkpoint efficacy.35 Similarly, in 
another mouse orthotopic model of non-small cell lung 
cancer, recruitment of Ccr2-expressing cells by TNF-
related apoptosis-inducing ligand (TRAIL) signaling 
favored tumor growth.36 Also consistent with these find-
ings, in a mouse model of hepatocellular carcinoma, 
Ccr2+ myelomonocytic cells are recruited and beneficial 
during senescence surveillance, but functionally inhibit 
CD8+ T cell proliferation and promote tumor growth after 
tumor initiation.37 The presence of these cells in human 
liver metastases confers a poor prognosis in colorectal 

cancer.38 These data support the finding that recruit-
ment of myeloid cells expressing Ccr2 creates an immu-
nosuppressive microenvironment that inhibits CD8+ T 
cell expansion and limits immune checkpoint therapy. 
Our data show that recruitment of this population is 
promoted by PI3K gain of function in tumors and that 
inhibition can resensitize tumors to immune checkpoint 
blockade. Clinically, this is relevant to both primary and 
secondary resistance. In our model, Ccl2 was necessary 
for PI3K gain-of-function resistance to immunotherapy, 
but given the broad effects of PI3K activation on tumor 
progression, there may be other PI3K-mediated effectors 
involved.

Previous work supports our findings that the PI3K 
pathway is associated with resistance to immunotherapy. 
PTEN is a negative regulator of PI3K, therefore a loss 
of function in PTEN would be expected to phenocopy 
gain of function in PI3K. In human melanoma samples, 
PTEN loss correlated with decreased CD8+ T cell infiltra-
tion, and a PI3Kβ inhibitor synergized with anti-PD-1 in 
a mouse model of melanoma.39 In agreement with our 

Figure 4  Ccr2/5 inhibition resensitizes PIK3CA H1047R tumors to treatment with antiprogrammed cell death protein 1 (anti-
PD-1). (A) Experimental design for in vivo Ccr2/5 inhibitor treatment. (B) Ccl2 (left) and Ccl5 (right) chemokine quantification 
in peripheral blood of mice bearing control or PIK3CA H1047R tumors after BMS687681 or vehicle treatment. (C) Frequency 
of Ccr2hi myeloid cells in control or PIK3CA H1047R MC38 tumors treated with BMS687681 and/or anti-PD-1 treatment. (E) 
Tumor volume over time for PIK3CA H1047R or control tumors growing in mice treated with BMS687681 or PD-1 blockade as 
indicated. Data are mean±SEM; n=5 animals per group. *P<0.05; **p<0.01.
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findings, CCL2 expression was higher in tumors with loss 
of function of PTEN.39 A single patient with previously 
untreated leiomyosarcoma has been described who had a 
prolonged, sustained response to pembrolizumab with the 
exception of a single, treatment-resistant metastatic site. 
When sequenced, the resistant tumor harbored a loss of 
function PTEN mutation not present in the parent tumor 
or other metastatic sites, leading to the conclusion that 
this mutation is associated with immune escape.40 PIK3CA 
mutation or increased mammalian target of rapamycin 
signaling has also been associated with poor response to 
immune checkpoint inhibition in head and neck squa-
mous and clear cell renal cell carcinomas.41 42 In a breast 
cancer orthotopic model, treatment with BKM120, a pan 
PI3K inhibitor synergized with anti-PD-1 in tumor regres-
sion.43 The alpha isoform of PI3K is responsible for most 
tumor intrinsic functions typically attributed to PI3K such 
as growth signaling and transformation downstream of 
receptor tyrosine kinases.6 7 In this study, we have used 
a PI3K inhibitor, BAY80-6946, with dual specificity for 
the alpha and delta isoforms. A potential limitation of 
our study is the confounding effect of PI3K delta isoform 
inhibition. The delta isoform is primarily expressed in 
lymphocytes, therefore the expected effect of delta inhi-
bition would be impaired anti-PD-1 response, which was 
not seen, although ultimately, effect on other isoforms 
cannot be excluded. Other work has shown that inhibi-
tion of PI3K gamma enhances response to immune check-
point inhibitors through the effect on myeloid cells.44–46 
This study is an important complement to current under-
standing by showing that tumor-intrinsic gain-of-function 
mutations in PI3K may be associated with poor response 
to immunotherapy and proposes a mechanism of TME 
modulation that can be further targeted therapeutically.

Strategies to increase response to immunotherapy in 
otherwise resistant tumors are a priority to inform clinical 
trial design. We found that small molecule inhibitors of 
both PI3K as well as Ccr2 can sensitize resistant PIK3CA 
H1047R tumors to anti-PD-1 therapy, suggesting two 
possible therapeutic strategies in patients with primary or 
secondary immunotherapy resistance. Ccr2 inhibitors are 
currently in clinical trials in patients with pancreatic cancer, 
having shown promise in preclinical models.47 Two PI3K 
inhibitors with activity against the alpha isoform are Food 
and Drug Administration-approved, apelisib and copan-
lisib (BAY80-6946). There are currently open studies inves-
tigating the use of copanlisib with immune checkpoint 
blockade (NCT04895579, NCT04431635, NCT03842228, 
NCT03711058, NCT04317105, NCT03884998). Thera-
peutic use of small molecule inhibitors to target tumor 
cell signaling pathways in order to modulate the immune 
microenvironment has been shown in principle first with 
mitogen-activated protein kinase (MEK) inhibition and 
histone deacetylase (HDAC) inhibition. While tradi-
tionally thought to target tumor intrinsic mechanisms 
of growth, these also modulate the immune microen-
vironment to be less suppressive.48–50 Clinical trials are 
underway with these combinations. This also points to the 

need for robust immune assessment in patients receiving 
targeted small molecules on clinical trials to advance 
understanding of drugs which have beneficial effects on 
the immune response.

PI3K was identified in a systematic screen for resistance 
to immunotherapy conferred by known tumor-associated 
mutations. Mutations were included in the analysis based 
on representation in a common cancer type.19 From this 
pool of mutations, none of which was selected for inclu-
sion based on a role in immune responsiveness, we were 
able to discover a novel role for a cancer driver mutation. 
This expands on our knowledge of somatic mutations 
that alter the vulnerability of a tumor to immune attack 
and challenges the notion that driver mutations act solely 
in a cell intrinsic way to promote cell growth and survival. 
Careful evaluation of driver mutations and their role 
in regulating susceptibility to immunity to cancer may 
inform combination therapy with immune checkpoint 
blockade.
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