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identified 37 nodes and 141 edges among the 37 genes 
included in the MPEs Mφ signature (figure 6D), demon-
strating that these genes are strictly interrelated. Further-
more, the CytoHubba analysis allowed to identify the top 
10 nodes ranked by the degree of interactions (figure 6D, 
right panel). Among the identified hub genes, in which it 
was possible to find genes classically related to M2 pheno-
type (ie, CD163, MRC1, IL10), both fibronectin (FN1) 
and IL-6 (one of the most abundant cytokine in MPEs) 
showed the highest degree of interactions, resulting as 
potentially crucial genes.

Even if no significant differences were observed in the 
distribution of the MPEs Mφ signature across different 
tumor stages (online supplemental figure S7), given the 
importance that the immune contexture may exert in 
the prediction of patients’ outcomes,12 we stratified 672 
LUAD patients and 271 lung squamous cell carcinoma 
(LUSC) patients from KM Plotter database43 according 
to the mean expression of the MPEs Mφ signature . As 
shown by the Kaplan-Meier curves, a significant survival 
disadvantage was observed in patients with high expres-
sion of the MPEs Mφ signature in LUAD but not in LUSC 

Figure 6  A novel MPE-associated gene signature correlates with poor prognosis in LUAD patients. (A) Schematic 
representation showing the intersection of TRM and MDM gene signatures (from Casanova-Acebes)15 and MPEs Mφ 
signature (from this study) with the up-regulated genes in LUAD PEMC versus PBMC. (B) Hierarchical clustering of TRM, 
MDM and MPEs Mφ genes between LUAD PEMC versus PBMC. The heatmap reported only the genes that match with the 
significantly upregulated ones in PEMC (|Log2FC|>2 and adjp_val<0.05). TRM=9 out of 22; MDM=28 out of 37; MPEs Mφ=37 
out of 37. (C) RNA expression levels of the 37 genes included in the MPEs Mφ signature across different immune cell types. 
Boxplots show the mean-normalized expression value of each gene in each selected cell type. The analysis was performed 
through My GenSet online tool. Data from http://www.immgen.org. (D) Protein-protein interaction (PPI) network built on the 
37 genes included in the MPEs Mφ signature, using STRING online database (https://string-db.org/ V.11.0). A total of 141 
edges were identified (minimum required interaction score >0.4; p<1.0 x 10–16). Cytoscape software (V.3.8.2) was used for 
analysis and visualization and Cytohubba plugin app to identify the top 10 hub genes (right panel) with the highest degree 
of interaction. (E) Kaplan-Meier curves estimating the prognostic value of MPEs Mφ signature in LUAD and LUSC cohorts 
(see online supplemental methods). A high level of MPEs Mφ signature (red curves) was associated with poor overall survival 
in LUAD (p=0.00045) but not in LUSC patients (p=0.69). A p<0.05 was considered as statistically significant (log rank test). 
Data plotted from http://kmplot.com. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MDM, monocytes 
derived macrophages; MPEs, malignant pleural effusions; PBMC, peripheral blood mononuclear cells; PEMC, pleural effusion 
mononuclear cells; TRM, tissue resident macrophage.
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(figure  6E), indicating an histotype specificity for the 
identified signature. Similar but less impressive results 
were obtained by testing the MDM signature (online 
supplemental figure S6C) and no significant results were 
obtained from the TRM signature (online supplemental 
figure S6D), suggesting that the newly MPEs Mφ signature 
identified in this study better represents myeloid targets 
for the treatment of metastatic LUAD.

DISCUSSION
The implication of TIME as a key element determining 
resistance to immunotherapy with ICIs is now widely 
appreciated.44 Furthermore the metastatic involvement 
of pleural and peritoneal cavities was found to be asso-
ciated with worse ICIs outcome in cancer patients.45 In 
this context, the past few years have witnessed a series of 
studies reporting a complete characterization of tumor 
immune landscape in NSCLC from early to advanced 
disease.7 10 15 18–20 Here we performed a deep character-
ization of immune cells and soluble factors from MPEs 
and peripheral blood of LUAD patients to investigate the 
TIME of advanced NSCLC in a metastatic setting more 
easily accessible than others and, to our knowledge, still 
little explored.

All our observations concur to define an MPEs-specific 
microenvironment potentially prone to an effective 
immune-response, but conscripted in a wound-healing, 
proinflammatory and tumor-supportive mode. This is 
witnessed first by upregulation in PEMC, respect to the 
circulating PBMC counterpart, of genes related to (1) 
tumor promotion, spanning from angiogenesis and extra-
cellular matrix organization (such as VEGFA, SERPINE1, 
FN1 and members of matrix metalloproteinase family) to 
cellular proliferation (such as LIF, FGF and WNT growth 
factors, also linked to the maintenance of tumor stem 
cells properties); (2) activation of chronic inflammation 
and immune suppression (such as IL6, IL1A, CCL3, IL10 
and IDO1); (3) recruitment of TAMs, T Regs and MDSCs 
(such as CCL2, CCL7, CXCL1, CXCL2, CCL20); and 
parallel downregulation of genes (such as PRF1 and gran-
zymes) related to the activation of effector cytotoxic cells 
(ie, CTL and NK cells). In accordance in silico immune 
deconvolution revealed a decreasing trend in the overall 
content of all effector cells (T and B lymphocytes and NK 
cells) in MPEs. On the other hand, the high proportion 
of monocytes, M2 polarized macrophages and activated 
mast cells suggests that these three immune cell types, well 
known to be involved in inflammatory, proangiogenic, 
metastatic and immune suppressive pathways,11 46 47 could 
represent the major drivers in shaping an immunosup-
pressive MPEs microenvironment. Indeed, the presence, 
even if in a relatively low levels, of potent effector cytokines 
such as INFα2, MIP1α, INFγ and TNFβ, is a further hint 
of a present but thwarted immune response in the TME 
of MPEs. Instead, the most represented and character-
istic soluble factors in MPEs are related to inflammatory 
processes, tumor propagation and stem like phenotype 

maintenance and Th2/M2 polarization. Of note SCF is 
also known to mediated mast cells recruitment and acti-
vation, via c-kit receptor, in tumor microenvironment.48

These findings are also coherent with the ability of cell 
free MPEs supernatant to induce in vitro M2 phenotype 
polarization. Our data are in line with previous findings 
that defined TAMs as the dominant immunosuppressive 
cell type in LUAD MPEs, leading to T cells disfunction via 
TGF-β.21 Given the correlation between high macrophage 
infiltration and poor prognosis in several human cancers, 
including NSCLC,12 13 49 these cells represent a promising 
target for anticancer therapies. Strategies, that aim at 
limiting macrophage recruitment or at reprogramming 
their phenotype toward an antitumor one, are currently 
under investigation.50

IL6 and CCL2 that we found at high concentration and 
with a large difference between intrapleural and systemic 
levels, suggesting that they are locally secreted and carry 
out a pivotal role in that specific TME, are inflamma-
tory factors correlated to MPEs and monocytes/macro-
phages recruitment.24 In particular, CCL2 was shown to 
be a major player in the recruitment of monocytes and 
M2 macrophage differentiation in MPEs of mesothelioma 
patients.22 Furthermore, very recently it has been shown 
that the blockade of CCL2 expression could overcome 
the intrinsic PD-L1/PD-1 resistance in triple negative 
breast cancer.51 These evidences support our hypothesis 
that monocytes of LUAD patients, the most abundant 
circulating immune cell type, are recruited via CCR2/
CCL2 axis into MPEs where they switch toward a proin-
flammatory and protumoral phenotype. This concept is 
supported by several findings: (1) the upregulation of 
CCR2 receptor gene expression in LUAD PBMC with 
respect to HD PBMC; (2) higher concentration of CCL2 
in MPEs with respect to plasma; (3) high amounts of M2 
macrophages in MPEs, as shown by CIBERSORTx decon-
volution, and finally (4) the ability of MPEs to induce 
macrophage M2 polarization in vitro. Even if these obser-
vations require further in vitro investigations, they suggest 
CCL2 as a potential key target for therapy in this clinical 
setting. Of note, antibodies that selectively target CCL2 or 
its receptor (CCR2) have completed phase I and II clin-
ical trials showing promising results in advanced prostate 
and pancreatic cancers.50 Likewise, clinical trials testing 
the activity of antibodies anti-IL6/IL6Rα are currently 
under investigations.50 In this regard IL-6 resulted not 
only as one of the most represented cytokines in pleural 
effusions, but also as central gene in the identified MPEs 
Mφ signature, along with FN1, highlighting a protumoral 
as well as a profibrotic phenotype, that could in turn 
promote the mobility of cancer cells in this metastatic 
site. Further investigations of this immune subtype may 
reveal novel tumor-immune interactions that are at the 
basis of metastatic process.

Although T cells have been the primary target of cancer 
immunotherapy, myeloid cells exhibit specific phenotypes 
and functions that could impact on cancer progression 
and immunotherapy response.1 Noteworthy the 37-gene 
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MPEs Mφ signature, identified in this study, resulted to 
be associated with poor clinical outcome specifically in 
LUAD patients. Hence approaches aiming to couple the 
specific targeting or reprogramming of immunosuppres-
sive myeloid cells with immunotherapies directed to the 
reactivation of T cells could be a successful strategy to 
overcome drug resistance. In this regard a recent study 
showed how in cholangiocarcinoma the dual inhibition of 
TAM and G-MDSC potentiates ICI therapy, underpinning 
the importance of this type of combinatorial approach.52

Overall, our study reported for the first time a compre-
hensive and wide characterization of MPEs microen-
vironment in LUAD patients. Furthermore, given the 
potentiality to collect from MPEs both tumor and immune 
cells, it represents a patient-derived system that could be 
used to establish ex vivo co-culture models as a reliable in 
vitro testbed to evaluate the efficacy of new therapeutics.
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