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activates NF-κB via IKKα and IKKβ phosphorylation 
that induces IκBα phosphorylation and its subsequent 
degradation.63 64Coherently, TNF treatment induced 
phosphorylation of IKK proteins within 5 min from 
the stimulus in PANC-1 cells (figure  6B). Additionally, 
reduced levels of total IκB and relative increased levels of 
pIκB were observed. Strikingly, SIK3-depleted tumor cells 
showed marked impairment of IKKα/β and IκB protein 
phosphorylation (figure 6B). These data indicate a role 
of SIK3 in promoting the upstream signaling cascade of 
TNF-induced NF-κB activation by sustaining, likely indi-
rectly, IKKα/β protein phosphorylation.

Acetylation of NF-κB is a post-translational modifica-
tion that stabilizes NF-κB nuclear retention and gene 
expression.65 66 Consistently, we observed increased 
acetylated NF-κB (acNF-κB) on rHuTNF stimulation in 

SIK3-proficient cells (siCtrl). However, SIK3-deficient 
cells failed to increase acNF-κB after rHuTNF treatment 
(figure 6C). Among the regulators of NF-κB acetylation, 
HDAC4 decreases NF-κB activation by deacetylating the 
NF-κB p65 subunit.62 67 Notably, SIK3 phosphorylates 
HDAC4 and inhibits its activity.62 We confirmed that 
HDAC4 is negatively regulated by SIK3, as phosphoryla-
tion of HDAC4 was abrogated by the SIK3 inhibitor HG-9-
91-01 (figure 6D). Therefore, we hypothesized that SIK3 
increases NF-κB acetylation and nuclear stabilization by 
inhibiting HDAC4 protein levels. To prove this hypoth-
esis, we silenced HDAC4 in SIK3-depleted tumor cells and 
evaluated tumor cell cytotoxicity after rHuTNF treatment. 
Indeed, SIK3/HDAC4 double-deficient PANC-1 cells 
showed decreased TNF-induced cytotoxicity compared 
with tumor cells transfected with SIK3-specific siRNA 

Figure 6  Mechanisms of TNF-induced NF-κB activation by SIK3. (A) Upper panel: immunoblot analysis of pLKB1, LKB1 
and β-actin (loading control) in PANC-1 wild-type cells UT or stimulated for 1–60 min with TNF. Lower panel: quantification of 
pLKB1 expression normalized to total LKB1. (B) Left panel: immunoblot analysis of upstream regulators of NF-κB. Right panel: 
quantification of pIKKα/β expression normalized to total IKKα+IKKβ and quantification of pIκBα normalized to total pIκBα. 
(C) Left panel: immunoblot analysis of NF-κB, acNF-κB and histone H3 (nuclear loading control). Right panel: quantification 
of nuclear acNF-κB expression normalized to nuclear histone H3 expression. (D). Effect of pharmacological SIK3 inhibition on 
HDAC4 phosphorylation. PANC-1 cells were treated with different concentrations of HG-9-91-01 for 3 hours in the presence 
of 10 ng/mL rHuTNF. Whole cell lysates were analyzed in an meso scale discovery (MSD) assay with anti-HDAC4 capture and 
anti-pHDAC4 detection antibodies. Data are shown as percent of HDAC4 phosphorylation normalized to UT PANC-1 (DMSO 
only). (E) HDAC4 knockdown rescues siSIK3 PANC-1 cells from TNF-induced cytotoxicity. TNF-induced killing of PANC-1-luc 
cells determined by the luciferase activity of remaining tumor cells. PANC-1-luc cells were transfected with indicated siRNAs 
for 72 hours and stimulated with 100 ng/mL of rHuTNF for 24 hours. (A–E) Representative data of two independent experiments. 
WB quantifications were obtained by combining two independent experiments. Columns show mean±SEM. P values were 
calculated using two-tailed Student t-test. *P<0.05, **P<0.01. acNF-κB, acetylated NF-κB; HDAC4, histone deacetylase 4; IKK, 
inhibitory-κB kinase; LKB1, liver kinase B1; NF-� B, nuclear factor kappa B; pLKB1, phosphorylated LKB1; SIK3, salt-inducible 
kinase 3; TNF, tumor necrosis factor; UT, untreated.  on A
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alone (figure 6E). Thus, on TNF stimulation, SIK3 stabi-
lizes NF-κB activation, at least partially, through NF-κB 
acetylation and HDAC4 inhibition. Taken together, these 
data indicate a dual role of SIK3 in promoting NF-κB 
signaling by both positively modulating its upstream regu-
lators and concomitantly inhibiting its nuclear repressors.

TNF/SIK3-inducible gene expression signature is associated 
with poor prognosis in patients with pancreatic cancer
Comparative transcriptome analysis of TNF-stimulated 
SIK3-proficient and SIK3-deficient cells revealed alto-
gether 386 genes that were significantly regulated by SIK3 
after TNF stimulation (figure  5A) in pancreatic tumor 
cells. Among those, 205 genes were attributable to NF-κB 
activation. We investigated the expression of these genes 
in the PAAD dataset of the TCGA. One hundred eighty-
four of the genes were also covered in this dataset and 

were condensed to a single index per patient as previously 
described,20 yielding to quantitative NF-κB indices for 
178 patients with primary PAAD. The majority of patients 
showed high index expression (figure  7A, blue dots), 
whereas a smaller group of patients showed impaired 
signature expression (figure 7A, red dots). Notably, the 
deficiency in TNF/SIK3-inducible NF-κB gene signature 
expression correlated with improved survival (p=0.0012). 
More than 75% of patients with low index were still alive 
after 7 years, while the median overall survival in the index 
high group was less than 2 years (p=0.0012) (figure 7B).

A high index significantly correlated not only with 
increased expression of SIK3 and TNF but also particu-
larly with increased CD8+ TC infiltration and cytotoxic 
TC activity, as determined by granzyme B and perforin 
expression (figure  7C–F). This indicates a direct link 

Figure 7  A TNF/SIK3/NF-κB gene signature is associated with poor prognosis in PDAC. (A) Two populations with distinct TNF/
SIK3/NF-κB gene signature (index) are observed in patients with PDAC. Q–Q plot of the distribution of the TNF/SIK3 index and 
a standard Gaussian distribution. The value −0.6 was used as cut-off value to separate index high from index low patients. (B) 
Patients with low TNF/SIK3/NF-κB index show improved survival than the high TNF/SIK3/NF-κB group. Kaplan-Meier curves 
with CIs for the index high and low groups. Samples with a low signature index (<−0.6) are shown in red, whereas samples 
with a high signature index (>0.6) are colored in blue. The estimated p value of 0.0012 indicates a significant better survival in 
the index low group. (C–F) Expression of selected genes on the x-axis against the TNF/SIK3/NF-κB index signature index on 
the y-axis. Samples with a signature index of <−0.6 (=low index group) are represented by red circles. In this group, individual 
samples were numbered for comparison among different graphs. Samples with a signature index of >−0.6 (=high index group) 
are represented by blue circles. For the high index subgroup, a linear least-squares regression line was fit. We tested whether 
the slope of this line significantly differs from zero (no correlation) and shows the corresponding p values. (C); TNF correlation 
coefficient in high index group: 0.423; p value high index <0 .01. (D) CD8A correlation coefficient in the high index group: 0.646; 
p value of regression <0.01. (E) Geometric mean of perforin (PRF1) and granzyme (GZMA) correlation coefficient in the high 
index group: 0.695; p value high index <0.01. (F) SIK3 correlation coefficient in the high index group: 0.373; p value high index 
<0.01. Q–Q, quantile–quantile.
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between TC activity in situ and NF-κB activation in the 
majority of pancreatic cancers. Thus, these data further 
corroborate the notion that a TNF–SIK3–NF-κB axis 
promotes tumor progression and that abrogation of this 
pathway may be beneficial for patients with cancer.

DISCUSSION
The complete success of CIT is hindered by various resis-
tance mechanisms that may originate from the tumor 
microenvironment or directly from the tumor cells.2 
Recent studies showed that aberrant response to TC-re-
leased cytokines is a major mechanism of tumor-intrinsic 
resistance to immunity.3 5 6 68 In this work, we show for 
the first time that tumor cells exploit SIK3 to counteract 
TC attack by promoting prosurvival gene expression after 
TNF stimulation. SIK3 was identified by a genetic screen 
for factors that determine the fate of tumor cells after 
the encounter of cytotoxic TCs. In contrast to canonical 
immune modulators, SIK3 critically regulated tumor 
sensitivity towards TC attack rather than TC activation.

Here, we introduce SIK3 as a molecular switch of 
TNF responses in cancer. We show that SIK3 sustains 
TNF-induced NF-κB activation, nuclear translocation, 
and retention. Along this line, other groups described 
a modulatory function of SIK family members towards 
NF-κB activation.67 Nevertheless, the role of SIK3 in 
modulating TNF-induced NF-κB activation in the 
context of cancer immunity has never been reported 
before. TNF stimulation in SIK3-proficient cancer cells 
led to profound changes in chromatin accessibility with 
remarkable alteration of gene expression. Coherently, 
regulation of chromatin accessibility determines tumor 
resistance to TC-mediated cytotoxicity.69 70 In line with 
other studies,41 71 72 we showed that NF-κB activation led 
to massive expression of prosurvival and antiapoptotic 
genes. Notably, ablation of SIK3 reverted the expression 
of this gene signature, resulting in massive cell death after 
TNF stimulation. Overexpression of some of those differ-
entially regulated genes in SIK3-depleted cells conferred 
only partial protection from TNF-induced cytotoxicity. 
Based on this observation, we speculate that several SIK3-
dependent prosurvival and antiapoptotic genes simulta-
neously orchestrate protection of tumor cells from TNF 
or TC-mediated cytotoxicity.

To identify the molecular mechanisms by which SIK3 
regulated NF-κB activation, we observed that TNF treat-
ment led to modest but significant activation of the SIK3 
upstream kinase LKB1. LKB1 activation from TNF–
TNFR1 has never been reported. However, Lombardi et 
al detected higher pLKB1 in macrophages after activa-
tion of TLR4 and IL1R,73 two receptors sharing multiple 
intracellular signaling nodes with the TNFR1 pathway.74 
Despite the increased LKB1 activation by TNF, knock-
down of LKB1 neither increased the sensitivity of tumor 
cells to TNF nor decreased NF-κB activity. These observa-
tions might be explained by the role of LKB1 in modu-
lating the activity of at least 13 different known targets,75 

which overall may have a different impact than the sole 
inhibition of SIK3. Additionally, LKB1 is a known nega-
tive regulator of the NF-κB signaling pathway.76 77 Hence, 
we could not confirm a role of LKB1 in activating SIK3 
and, in turn, NF-κB on TNF stimulation. Among other 
reported upstream regulators of SIK3, AKT is activated 
on TNF stimulation.78–80 Although we did not address the 
role of AKT in this work, we hypothesize that SIK3 activa-
tion on TNF might occur by this alternative pathway.

To identify the mechanism by which SIK3 influences 
NF-κB activity, we investigated whether SIK3 modulated 
known regulators of NF-κB. Strikingly, we observed 
impaired phosphorylation of IKK and IκBα proteins 
on SIK3 knockdown. The mechanism by which SIK3 
modulates those proteins remains unclear. Yet, SIK3 may 
promote mTOR activation,81 which in turn promotes phos-
phorylation of the IKK complex.82 83 Alternatively, several 
NF-κB target genes, such as cFLIP, cIAP2, and XIAP, may 
generate a feedback loop that in turn sustains the NF-κB 
pathway by acting on its upstream regulators.51 84 85Hence, 
we propose an indirect role of SIK3 in controlling the 
upstream regulators of the NF-κB pathway.

On activation, several factors influence the duration 
and the strength of NF-κB activity.63Among them, HDAC4 
is a direct target of SIK kinases,67 86–88 and its phosphoryla-
tion by SIK kinases leads to its inactivation.86 Additionally, 
HDAC4 physically interacts with p65 subunits of NF-κB 
and reduces NF-κB stability by deacetylation.66 67 To link 
these studies, we showed that knockdown of HDAC4 
rescued SIK3-depleted cells from TNF-mediated killing. 
Thus, we propose a dual role of SIK3 in regulating NF-κB 
by both promoting IKKα/β and IκBα phosphorylation 
on the one side and by sustaining NF-κB nuclear reten-
tion by inhibiting HDAC4 on the other side.

Despite our validations on the NF-κB transcription 
factor, chromatin accessibility analysis suggests that addi-
tional transcription factors are involved in regulating the 
observed effects, which we do not rule out. As several 
of the inferred transcription factors, such as IRF and 
bZIP family members, are interacting with the NF-κB 
pathway,89–91 the observed effects might to some extent 
be direct effects of NF-κB modulation by SIK3.

To confirm the pivotal role of the TNF–SIK3–NF-κB 
axis in cancer, we investigated the impact of a TNF–SIK3–
NF-κB induced gene signature on patients’ survival. The 
majority of patients with pancreatic cancer showed high 
gene signature expression, which correlated with poor 
prognosis. However, patients who were unable to upreg-
ulate this gene signature showed prolonged survival. 
Interestingly enough, SIK3 and TNF expressions did not 
positively correlate with gene index expression. Whereas 
we did not further investigate the reasons behind this 
observation, we speculate that the impaired signature 
expression may arise from genetic alterations within the 
TNF–NF-κB pathways that render tumor cells unable to 
upregulate this signature even in the presence of TNF 
and SIK3. Taken together, these data confirm that SIK3 
protects tumor cells from TC attack by taking advantage 
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of TC-released TNF to promote profound changes of 
chromatin accessibility followed by transcription of 
numerous genes that counteract cytotoxic agents and 
cytokines released by TCs.

With this work, we sought to provide the rationale of 
SIK3 as a therapeutic target for CIT. Previously, several 
studies described roles of SIK3 in promoting cell prolif-
eration, cancer progression, and metastasis.20 32 33 61 92 93 
Hence, SIK3 blockade might decrease tumor prolifera-
tion and invasiveness on the one hand and increase tumor 
susceptibility to TC attack on the other hand. SIK3 expres-
sion is not restricted to tumor cells, but SIK3 mRNA 
is also present in a variety of healthy tissues hinting to 
possible adverse effects of systemic SIK3 blockade.94 Yet, 
abrogation of SIK3 alone did not show a major impact on 
cell viability, indicating that SIK3 inhibition would induce 
cytotoxicity only in tissues where TNF is secreted, such 
as inflamed cancer tissues. Additionally, novel pan-SIK 
kinase inhibitors did not exert strong toxicity in mice.95 
Such inhibitors have been widely tested in the context of 
macrophage biology, where they can induce the tolero-
genic M2 phenotype.73 Thereby, SIK2 has been shown to 
be the driver of this phenotype.67 73 95–97 Thus, the usage 
of pan-SIK inhibitors may not be appropriate for cancer 
treatment, while SIK3-specifc inhibitors might elicit 
tumor sensitization to immune attack without inducing 
an immune tolerogenic microenvironment.

Although current cancer therapeutic strategies aim to 
reinforce TC functionality by acting on immune modula-
tors or cytokine pathways, sensitizing tumor cells to the 
insult of the immune system may be used as a comple-
mentary approach to immunotherapy. In line with these 
considerations, a recent study showed that lowering TNF 
cytotoxicity threshold in tumor cells augments the impact 
of immunotherapy in preclinical models.5 On the other 
hand, blockade of TNF failed to show clinical success 
because of its dual role in cancer.98 Our work suggests 
that rewiring tumor response to TNF, by SIK3 inhibition, 
is a more efficacious strategy to exploit the TNF pathway 
for anticancer immunity.
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