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not statistically significant in 9464D-GD2 tumors. These 
data indicate that while MHC-I inducibility is retained in 
vivo in 9464D-GD2-I and its expression is upregulated in 
response to CAIR, tumor recruitment or retention of NK 
and T cells is not necessarily enhanced by this difference 
compared with the MHC-I non-inducible 9464D-GD2 
tumors.

To assess if MHC-I upregulation correlated with 
increased responsiveness of GD2-expressing 9464D 
tumors to CAIR, we monitored tumor growth and survival 
in response to treatment (figure  4D–F). As before, we 
observed that both 9464D-GD2-I and 9464D-GD2 tumors 
showed similar regression in the first 30 days after treat-
ment initiation, suggesting that MHC-I does not impact 
the early response of tumors to CAIR (figure  4E). 
However, after this early period, tumor growth diverged 
and mice bearing 9464-GD2-I tumors had fewer cured 
mice than mice bearing 9464D-GD2 tumors (6/17 mice vs 
13/19 mice tumor free, p<0.05, figure 4D). Additionally, 
9464D-GD2-I tumors regrew more quickly and had worse 
survival than 9464D-GD2 tumors (figure  4E–F, online 
supplemental figure 4), suggesting that tumor-reactive 
cells which are typically suppressed by MHC-I expression 
(NK cells and possibly macrophages) are responsible for 

slowing the growth of recurrent tumors.14 Together, these 
data support the conclusion that NK cells, rather than 
CD8+ T cells, drive 9464D-GD2 responsiveness to CAIR 
and that this NK response is aided by low or absent MHC-I 
expression on tumor cells.

DISCUSSION
The results of this study provide insights regarding the 
mechanism of our recently described combination radio-
immunotherapy regimen targeting innate and adaptive 
immunity (CAIR) in the immunologically cold 9464-GD2 
model of neuroblastoma. The initial response (substan-
tial tumor shrinkage up through 30 days) does not appear 
to be mediated by NK or T cell populations. In contrast, 
NK cells are substantially involved in tumor cures by CAIR 
and might have a role in slowing tumor regrowth after 
recurrence. This finding is consistent with our observa-
tion that MHC-I is not expressed by 9464D-GD2 tumor 
cells in vitro or in vivo, and thus would not be expected to 
interfere with NK function via ligation of inhibitory Ly-49 
receptors.15 When CAIR was applied in mice bearing 
tumors capable of MHC-I induction (9464D-GD2-I), the 
treatment was similarly effective in causing initial tumor 

Figure 3  9464D-GD2 neuroblastoma cells do not express MHC-I in the absence or presence of stimulation by IFN-γ. (A–B) 
MHC-I H-2Kb and H-2Db expression in parental 9464D (A) and 9464D-GD2 (B) cells in vitro as assessed by flow cytometry with 
or without IFN-γ. (C) Quantification of quantitative reverse transcription PCR analysis of MHC-I expression machinery in parental 
9464D and 9464D-GD2 cells, with and without 48-hour stimulation with IFN-γ. All experiments performed in duplicate and a 
representative single experiment is shown. IFN, interferon; MHC-I, major histocompatibility complex class I.
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shrinkage; however, CAIR was significantly more effec-
tive at clearing tumors completely and slowing tumor 
outgrowth in mice bearing the MHC-I non-inducible 
9464D-GD2 tumors than for mice with the MHC induc-
ible 9464D-GD2-I tumors. These differences might be 
explained by the inhibition of NK cell function, a primary 
effector population, by MHC-I, combined with the insuffi-
ciency of the regimen to generate an effective CD8+ T cell 
response to fill in the gap in antitumor immune activity 
against the 9464D-GD2-I tumors.

MHC-I expression is absent or very low in nearly all 
high-risk clinical neuroblastoma tumors and is thought 
to contribute to an immunosuppressive tumor micro-
environment.16 17 One study demonstrated that primary 
human neuroblastomas are similarly associated with low 
expression of antigen presentation machinery.18 Another 
study of human neuroblastoma cell lines found that of 11 
commonly used cell lines, 9 expressed very low levels of 
mRNA related to antigen presentation on MHC-I.19 This 
lack of MHC expression on human neuroblastomas may be 
driven in part by MYCN amplification, which is associated 
with high-risk disease and with low expression of MHC-I 
and poor infiltration of T cells into the tumor microenvi-
ronment.20 21 Similarly, the MYCN-overexpressing preclin-
ical mouse models of neuroblastoma, such as 9464D and 

other TH-MYCN driven models, have previously been 
shown to express low levels of MHC-I and be minimally 
infiltrated by T cells.22 In some neuroblastoma cell lines 
with low baseline MHC-I expression, MHC-I expression 
can be induced by IFN-γ stimulation.18 23 However, this 
does not necessarily improve treatment response. While 
potentially increasing T cell recognition, induction of 
MHC-I has been shown to result in decreased sensitivity 
to NK-mediated cytotoxicity.18 Accordingly, we have previ-
ously demonstrated that upregulation of MHC-I on NXS2 
neuroblastoma cells can mediate escape from NK-driven 
immunotherapy in vivo by inhibiting NK cell function.15

Expression of antigens on MHC-I molecules is an intri-
cate process requiring cleavage of intracellular proteins 
by the proteasome or immunoproteasome, translocation 
of peptides through TAP channels in the endoplasmic 
reticulum (ER) membrane, trimming of peptides in the 
ER, and loading of high-affinity peptides before translo-
cation to the cell surface. As a result, interference with 
any of these steps can inhibit cell surface expression of 
MHC-I. Common methods of MHC-I downregulation by 
tumors include epigenetic dysregulation of genes relating 
to antigen presentation and, more rarely, selection for 
mutations of these genes.24 Through a mechanism not yet 
understood, the data presented here demonstrate that 

Figure 4  Selection and characterization of MHC-I inducible cell line (9464D-GD2-I) from parental 9464D. (A) In vitro 
comparison of MHC-I H-2Kb and H-2Db expression in 9464D-GD2-I cells in response to 48-hour stimulation with IFN-γ. (B) 
In vivo comparison of MHC-I H-2Kb and H-2Db expression in 9464D-GD2-I and 9464D-GD2 tumors in response to CAIR (RT, 
IT-IC, anti-CD40, CpG, anti-CTLA4) on day 13 of therapy. (C) The immune infiltrate of 9464D-GD2-I and 9464D-GD2 tumors 
untreated or treated with CAIR as assessed by flow cytometry of tumor disaggregates. (D) Treatment outcome, based on 
number of tumor-free mice, of 9464D-GD2-I and 9464D-GD2 tumors treated with CAIR (RT, IT-IC, anti-CD40, CpG, anti-CTLA4) 
shown in (E). (E) Tumor growth of treated and untreated 9464D-GD2-I and 9464D-GD2 tumors. (F) Survival of treated and 
untreated mice bearing 9464D-GD2-I or 9464D-GD2 tumors shown in (D and E). All experiments performed in duplicate and a 
representative single experiment is shown. CAIR, combination adaptive-innate immunotherapy regimen; IC, immunocytokine; 
IFN, interferon; IT, Intratumoral; MHC-I, major histocompatibility complex class I; NS, non-significant; RT, radiation therapy. *, 
p<0.05; **, p<0.01; ***, p<0.001.
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expression of TAP1 and PSMB9, genes responsible for 
cleavage and translocation of peptides into the ER, are 
dysregulated in 9464D-GD2. Similarly, loss of TAP1 and 
PSMB9 induction has been linked to the loss of MHC-I 
expression in models of renal cell carcinoma and leio-
myosarcoma.25 26 Expression of these genes is linked by a 
common bi-directional promotor that is induced by IFN-γ 
via IRF2 and STAT1.12 27 Accordingly, defects in the IFN-γ 
response pathway have also been linked to loss of MHC-I 
expression by cancer cells.28 It is not yet clear if the lack of 
TAP1 and PSMB9 inducibility by IFN-γ is solely, or directly, 
responsible for low MHC-I expression on 9464D-GD2 or 
how expression of these genes is dysregulated. Future 
studies will aim to clarify this association and identify the 
mechanism by which TAP1 and PSMB9 are suppressed in 
9464D-GD2. Further analyses of the regulation of these 
pathways, possibly via epigenetic modulation, may help 
determine whether this observation has relevance for 
human disease and potential therapeutic strategies to 
engage CD8+ T cells.29–32

In this study we demonstrated that early regression of 
9464D-GD2 and 9464D-GD2-I tumors following CAIR 
treatment was not solely mediated by radiotherapy, indi-
cating that the initial response is driven by the immuno-
therapy component of CAIR. We demonstrated that NK 
and T cells were not required for early tumor response, 
suggesting that non-lymphocyte populations drive the 
early antitumor response of these tumors to CAIR. Previ-
ously, we published a study showing that CD40 agonism 
combined with CpG, two components of CAIR, can 
mediate tumor regression via infiltration of tumoricidal 
macrophages and macrophage repolarization.33–35 Our 
prior report also demonstrated that anti-CD40 and/or 
CpG are required for the responsiveness of 9464D-GD2 
tumors to CAIR, suggesting that this mechanism might 
play a role in curing 9464D-GD2 tumors.4 Preliminary 
data from ongoing studies in our lab are suggestive of a 
potential role for macrophages in the early response to 
this CAIR regimen. Further work is underway to address 
this question in a separate report.

Even though the tumor response data demonstrate 
that T cells are not required in the early tumor response 
to CAIR, analysis of immune cells infiltrating into these 
tumors show an increase in infiltrating CD4+ and CD8+ T 
cells correlating with the increase in infiltrating NK cells. 
The increased infiltration of lymphocyte populations into 
tumors after CAIR suggests that this treatment results 
in the secretion of chemokines, which is driven by pro-
inflammatory signaling. This pro-inflammatory environ-
ment may be aided in part by the demonstrated depletion 
of T regulatory cells by CAIR, likely by the anti-CTLA4 
component of the regimen. Taken together, these results 
indicate that while T cells may not have a significant role 
in the early tumor response, CAIR treatment drives their 
recruitment, suggesting that corresponding induction of 
MHC-I with additional alleviation of immune suppression 
might further support antitumor T cell activity. Thus, 
the role of anti-CTLA4, which does not appear to have a 

significant role in tumor shrinkage in this model, might 
change substantially if further changes are made to the 
CAIR regimen that increase the T cell mediated anti-
tumor effect.

Conclusion
We show here that in the 9464D-GD2 model of neuro-
blastoma, NK cells are a primary effector population 
driving tumor cures and slowing tumor escape from our 
combination radio-immunotherapy regimen, CAIR. This 
conclusion is supported by reduced efficacy of CAIR after 
antibody depletion of NK cells and the finding that the 
inducible expression of MHC-I in 9464D-GD2-I corre-
sponds to fewer tumor cures and more rapid tumor 
outgrowth. Future studies should explore the role of 
myeloid cells in the treatment response, the ability to 
potentially modulate MHC class-I expression in vivo to 
drive an effective CD8+ T cell response, and the relevance 
of this model to human disease.
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