Intratumoral delivery of dendritic cells plus anti-HER2 therapy triggers both robust systemic antitumor immunity and complete regression in HER2 mammary carcinoma

Ganesan Ramamoorthi,1 Krithika Kodumudi,1 Colin Snyder,1 Payal Grover,2 Hongtao Zhang,2 Mark I Greene,2 Amrita Basu,1 Corey Gallen,1,1 Doris Wiener,1 Ricardo L B Costa,5 Hyo S Han,3 Gary Koski,4,5 Brian J Czerniecki 3,1,3

ABSTRACT

Background Human epidermal growth factor receptor 2 (HER2) targeted antibodies in combination with chemotherapy has improved outcomes of HER2 positive (pos) breast cancer (BC) but toxicity of therapy remains a problem. High levels of tumor-infiltrating lymphocytes are associated with increased pathologic complete responses for patients treated with neoadjuvant therapy. Here we sought to investigate whether delivery of intratumoral (i.t.) multiepitope major histocompatibility complex (MHC) class II HER2 peptides-pulsed type I polarized dendritic cells (HER2-DC1) in combination with anti-HER2 antibodies without chemotherapy could enhance tumor regression by increasing anti-HER2 lymphocyte infiltration into the tumor.

Methods BALB/c mice bearing orthotopic TUBO tumors, BALB/c mice bearing subcutaneous (s.c.) CT26 hHER2 tumors, or BALB-HER2/neu transgenic mice were all treated with i.t. or s.c. HER2-DC1, anti-HER2 antibodies, paclitaxel, T-DM1 or in combination. Immune response, host immune cells and effector function were evaluated using flow cytometry, interferon-γ ELISA and cytokine/chemokine arrays. The contributions of CD4+ and CD8+ T cells and antibody dependent cellular cytotoxicity (ADCC) were assessed using depleting antibodies and FcγR K0 mice. Molecular changes were evaluated by immunohistochemistry and western blot.

Results HER2-DC1 combined with anti-HER2 antibodies delivered i.t. compared to s.c. induced complete tumor regression in 75–80% of treated mice, with increased tumor infiltrating CD4+ and CD8+ T, B, natural killer T cells (NKT) and natural killer cells, and strong anti-HER2 responses in all HER2pos BC models tested. The therapy caused regression of untreated distant tumors. Labeled HER2-DC1 migrated prominently into the distant tumor and induced infiltration of various DC subsets into tumors. HER2-DC1 i.t. combined with anti-HER2 antibodies displayed superior antitumor response compared to standard chemotherapy with anti-HER2 antibodies. Lasting immunity was attained which prevented secondary tumor formation. The presence of CD4+ and CD8+ T cells and ADCC were required for complete tumor regression. In the HER2pos BC models, HER2-DC1 i.t. combined with anti-HER2 antibodies effectively diminished activation of HER2-mediated oncogenic signaling pathways.

Conclusions HER2-DC1 i.t. with anti-HER2 antibodies mediates tumor regression through combined activation of T and B cell compartments and provides evidence that HER2-DC1 i.t. in combination with anti-HER2 antibodies can be tested as an effective alternative therapeutic strategy to current chemotherapy and anti-HER2 antibodies in HER2pos BC.

INTRODUCTION

Human epidermal growth factor receptor 2 (HER2) overexpression accounts for...
20%–25% of breast cancers (BC), and it causes more aggressive disease associated with higher recurrence rate and metastatic spread.\(^1\) HER2-targeting monoclonal antibodies such as trastuzumab and pertuzumab used in combination with chemotherapy in a perioperative setting is the prevailing approach and was approved for patients with early stage and locally advanced HER2\(^{\text{pos}}\) BC.\(^2,3\) In addition to the primary role of blocking HER2-directed oncogenic signaling pathways, trastuzumab and pertuzumab have the capability to stimulate antitumor immune responses.\(^4\) Trastuzumab and pertuzumab can induce antibody-dependent cellular cytotoxicity (ADCC) by triggering FcgRIII activity on natural killer (NK) cells.\(^5\) In patients with HER2\(^{\text{pos}}\) metastatic BC, trastuzumab has been shown to induce anti-HER2 CD8\(^+\) T cell immune response with improved progression-free survival.\(^6\) Trastuzumab was also observed to induce CD4\(^+\) helper T cell-associated antitumor immunity in patients with early HER2\(^{\text{pos}}\) BC.\(^7\) Trastuzumab and pertuzumab increase internalization of HER2 and presentation of HER2-derived peptides on major histocompatibility complex (MHC) class I molecules, which drive antigen-specific cytotoxic T lymphocytes.\(^8,9\)

Despite the fact that HER2-directed therapeutic approaches have improved outcomes in early stage HER2\(^{\text{pos}}\) BC, many patients remain at risk of relapse or death.\(^10,11\) Polychemotherapy regimen is a standard neoadjuvant treatment added to HER2-targeted antibodies for patients with HER2\(^{\text{pos}}\) BC, but some patients suffer from significant toxicity. Various hematologic, neurologic, cardiac, and cognitive morbidities have been reported in patients with HER2\(^{\text{pos}}\) BC undergoing chemotherapy combined with HER2-targeted agents.\(^12,13\) Consequently, de-escalated strategies (eg, chemo-sparing) are being developed. To illustrate, results of a single-arm phase 2 trial support treatment of patients with early-stage node-negative HER2\(^{\text{pos}}\) BC with only a single chemotherapy agent (ie, paclitaxel) combined with trastuzumab.\(^14\) Furthermore, the HER2-targeted antibody-drug conjugate trastuzumab emtansine (TDM1) has demonstrated effective in incomplete responders to trastuzumab/pertuzumab/neoadjuvant chemotherapy and in patients with metastatic HER2\(^{\text{pos}}\) BC. It is currently being used as the standard of care in second line of treatment.\(^15\) Nevertheless, limited treatment benefits have been noted in a substantial fraction of patients with HER2\(^{\text{pos}}\) BC with advanced disease.\(^16\) In addition, it should be emphasized that treatment with TDM1 has been associated with equivalent absolute risk of clinically relevant adverse events compared with chemotherapy-based treatment.\(^17\) Trastuzumab deruxtecan (DS-8201) therapy has shown durable antitumor response in patients with metastatic HER2\(^{\text{pos}}\) BC who had been previously treated with T-DM1. However, pulmonary toxicity was observed in a substantial fraction of patients.\(^18\) All the above problems suggest that a more effective combination treatment approach is needed with focus on de-escalated strategies aiming to improve better risk-benefit ratio. There is growing interest in the use of immunotherapy combined with HER2-targeted antibodies to enhance the clinical response and overcome the severe toxic side effects of chemotherapy in patients with HER2\(^{\text{pos}}\) BC.\(^19\) This is particularly appealing as HER2-directed immunotherapies have been associated with favorable toxicity profile when compared with standard chemotherapy.\(^20\) Chemotherapy itself may drive immunogenic cell death and is associated with driving an immune response to cause tumor regression,\(^19\) thus driving positive immune responses in the tumor microenvironment (TME) may be a rational approach.

The immunosuppressive TME can exploit antitumor immune responses and inhibit CD4\(^+\) and CD8\(^+\) T cells, leading to eventual escape of HER2\(^{\text{pos}}\) BC cells from immune surveillance.\(^21\) Prominent efforts have been made in recent years to develop immunotherapies to aid HER2-targeted therapies, modulate the immunosuppressive TME, and improve clinical outcomes in patients with HER2\(^{\text{pos}}\) BC. Dendritic cells (DC) are an effective delivery tool to generate a tumor antigen–specific immune response that is specifically directed to cancer cells.\(^22\) Progressive loss of anti-HER2 Th1 immunity in patients with HER2\(^{\text{pos}}\) BC was correlated with poor treatment response and prognosis.\(^23\) An experimental HER2 peptide-pulsed type 1 polarized dendritic cell (HER2-DC1) vaccine strongly restored anti-HER2 Th1 immune response in patients with both HER2\(^{\text{pos}}\) ductal carcinoma in situ and early HER2\(^{\text{pos}}\) invasive BC and improved pathologic complete responses (pCR).\(^24,25\) The canonical Th1 cytokine interferon-γ (IFN-γ) plays an important role in innate and adaptive immune responses, supporting its value as a mediator of effective antitumor immunity. Evidence exists that Th1 cytokines including IFN-γ can mediate HER2 degradation via the ubiquitin proteasomal pathway and also via caspase 3 in HER2\(^{\text{pos}}\) BC cells.\(^25,26\) IFN-γ also enhances expression of MHC class I/II and programmed death ligand-1 (PD-L1) on tumor cells, leading to recognition by immune cells.\(^27\) More recently, we showed that treatment of Th1 cytokines in combination with trastuzumab and pertuzumab synergistically increased tumor senescence and apoptosis via STAT1 signaling in HER2\(^{\text{pos}}\) BC cells.\(^28\) Notably, HER2-DC1 subcutaneous (s.c.) delivery in combination with anti-HER2/neu antibodies delayed tumor growth and improved survival in a HER2\(^{\text{pos}}\) BC mouse model.\(^29\) Studies have shown that intratumoral (i.t.) delivery of tumor antigen-pulsed DC can enhance the efficacy of targeted agents, increase tumor infiltration of CD4\(^+\) and CD8\(^+\) T cells and prolong antitumor immunity in patients with advanced stage solid tumor.\(^30,31\) Recently, DC i.t. combination with local radiotherapy has been observed to increase tumor antigen specific CD8\(^+\) T cell infiltration in poorly immunogenic tumor models.\(^32\)

In the present study, we aimed to investigate the efficacy of HER2-DC1 i.t. delivery in combination with anti-HER2 antibodies and whether this combination approach could replace standard chemotherapy and drive enduring antitumor immunity in a HER2\(^{\text{pos}}\) BC preclinical model. We show that HER2-DC1 i.t. combined with anti-HER2
antibodies treatment was more effective than HER2-DC1 s.c. combined with anti-HER2 antibodies. Strikingly, in a clinically relevant HER2pos BC model, HER2-DC1 i.t. combined with anti-HER2 antibodies treatment showed a superior antitumor response compared with standard chemotherapy combined with anti-HER2 antibodies. We have also revealed a role for CD4+ and CD8+ T cells and ADCC in combination treatment induced tumor regression in a HER2pos BC model. HER2-DC1 i.t. combined with anti-HER2 antibodies treatment more effectively modulated HER2 oncogenic signaling pathways in a HER2pos BC model. Furthermore, HER2-DC1 i.t. combined with anti-HER2 antibodies treatment effectively attenuated the growth of untreated distant HER2pos tumors, highlighting its potential in generating systemic antitumor immunity in HER2pos BC. Our study suggests new approaches to improve HER2pos BC treatment by combining targeted antibodies with active immunotherapy while de-escalating cytotoxic chemotherapies.

METHODS

The compete experimental protocols are described in online supplemental material.

RESULTS

HER2-DC1 s.c. and anti-HER2 antibodies combination treatment

To examine the efficacy of HER2-DC1 s.c. combined with anti-HER2 antibodies treatment and host immune response in HER2pos BC, we utilized the HER2pos TUBO tumor model. After tumor establishment, mice were treated with HER2-DC1 s.c., anti-HER2 antibodies, or in combination. HER2-DC1 s.c. combined with anti-HER2 antibodies treatment significantly delayed tumor growth and improved survival compared with HER2-DC1 s.c. alone or anti-HER2 antibodies alone (figure 1A,B). Next, changes in the level of host immune cells after completion of treatments were examined on day 36 by flow cytometry. Increased level of tumor infiltrating CD4+ and CD8+ T cells and decreased level of myeloid-derived suppressor cells (MDSC) were observed in the tumors of the combination treatment group, compared with monotherapy (figure 1C,D). As shown in figure 1E, no significant difference in the secretion of IFN-γ was observed after co-culturing individual peptide-pulsed HER2-DC1 tumor draining lymph nodes (TLDNs) and non-draining lymph nodes (NDLN) from the HER2-DC1 s.c., anti-HER2 antibodies or HER2-DC1 s.c. in combination with anti-HER2 antibodies treatment groups. Thus, similar levels of anti-HER2 Th1 immunity existed. We observed significantly increased IFN-γ secretion on restimulation of splenocytes from the HER2-DC1 s.c. combined with anti-HER2 antibodies treatment group with HER2 peptides p5, p435 and p1209, when compared with control (figure 1F).

HER2-DC1 i.t. combination with anti-HER2 antibodies treatment enhance antitumor activity

Next, we investigated whether HER2-DC1 i.t. combined with anti-HER2 antibodies treatment show superior antitumor effects compared with HER2-DC1 s.c. combined with anti-HER2 antibodies in the HER2pos TUBO tumor model. We observed that HER2-DC1 i.t. combined with anti-HER2 antibodies treatment showed enhanced antitumor effects with complete tumor regression in 75% of the treated mice and prolonged survival compared with HER2-DC1 s.c. and anti-HER2 antibodies combination treatment (figure 2A,B). Importantly, mice with tumor regression were immune and rejected secondary TUBO tumor challenge (online supplemental figure 2). Pulsing with immunogenic multipeptide MHC class II HER2 peptides and the generation of a host specific anti-HER2 immune response was critical for the tumor regression efficacy of HER2-DC1 i.t. combined with anti-HER2 antibodies treatment, which was supported by the failure of controlling HER2pos TUBO tumor growth after autologous unpulsed DC1 i.t. or allogenic HER2-DC1 i.t. combined with anti-HER2 antibodies treatment (figure 2C). Next, we investigated whether HER2-DC1 i.t. in combination with single anti-HER2 antibody clone is sufficient for the enhanced antitumor activity or required both anti-HER2 antibodies in the HER2pos TUBO tumor model. Combination treatment of HER2-DC1 i.t. with single anti-HER2 antibody 7.16.4 clone showed a delay in tumor growth, but only induced complete tumor regression in 40% of treated mice (figure 2D). Interestingly, an enhanced antitumor response with complete tumor regression was observed in 80% of the mice treated with HER2-DC1 i.t. in combination with both anti-HER2 antibodies 7.16.4 and 7.9.5 (figure 2D). BALB-HER2/neuT mice that received HER2-DC1 i.t. and anti-HER2 antibodies (7.16.4 and 7.9.5) combination treatment also showed significant delay in tumor growth (figure 2E).

Anti-HER2 Th1 immune response was evaluated by co-culturing TDLNs and NDLNs with DC1 pulsed with HER2 peptides p5, p435 and p1209 individually. As shown in figure 2F, a significant increase in the level of IFN-γ secretion was observed after co-culturing individual peptide-pulsed HER2-DC1 with TDLNs and NDLNs from the HER2-DC1 i.t. combined with anti-HER2 antibodies treatment group, compared with the HER2-DC1 s.c. combined with anti-HER2 antibodies group. Similarly, restimulation of splenocytes from the HER2-DC1 i.t. combined with anti-HER2 antibodies treatment group with HER2 peptides p435 and p1209 showed a higher level of IFN-γ secretion compared with the HER2-DC1 s.c. combined with anti-HER2 antibodies group (figure 2G). Significantly increased serum levels of Th1 cytokines IFN-γ and tumor necrosis factor (TNF)-α were also observed in the HER2-DC1 i.t. and anti-HER2 antibodies combination treatment group compared with the HER2-DC1 s.c. combined with anti-HER2 antibodies treatment group (figure 2H). In addition, increased serum levels of other Th cytokines
and chemokines were observed in the HER2-DC1 i.t. in combination with anti-HER2 antibodies treatment and host immune response in HER2pos BC model. (A) Wild-type BALB/c mice were injected with 3×10^4 TUBO cells orthotopically into the MFP. After tumor establishments, mice were treated with HER2-DC1 s.c. (1×10^6 cells, s.c., weekly twice for 3 weeks) or anti-HER2 antibodies (clones 7.16.4: 50 µg, 7.9.5: 50 µg, i.p. injection, weekly once) or combination of both. Tumor growth was monitored two times a week (n=8). (B) Survival curve (n=8). Means±SEM. Control versus HER2-DC1 s.c. +7.16.4+7.9.5 (p=0.0031) in (A) and (p<0.0001) in (B), HER2-DC1 s.c. versus HER2-DC1 s.c. +7.16.4+7.9.5 (p<0.0001) in (A) and (p=0.0249) in (B) and 7.16.4+7.9.5 versus HER2-DC1 s.c. +7.16.4+7.9.5 (p<0.0005) in (A) and (p=0.0002) in (B). (C, D) On day 36 after completion of treatments, tumors were excised, single cell suspensions were prepared and stained for CD4+ and CD8+ T cells and myeloid-derived suppressor cells, and then analyzed by flow cytometry. (E) Tumor draining lymph nodes and non-draining lymph nodes were collected from the experimental groups. Then, co-cultured with or without HER2-DC1 individually pulsed with p5, p435 and p1209 for 72 hours. IFN-γ secretion was measured in the culture supernatant using IFN-γ ELISA. (F) Splenocytes were re-stimulated with p5, p435 and p1209 rHER2/neu peptides. IFN-γ secretion was measured in the culture supernatant by ELISA. Control versus HER2-DC1 s.c. +7.16.4+7.9.5 (p<0.0001) in (F). BC, breast cancer; CM, culture medium; HER2, human epidermal growth factor receptor 2; HER2-DC1, HER2 peptide-pulsed type 1 polarized dendritic cell; IFN, interferon; i.p., intraperitoneal; MFP, mammary fat pad; s.c., subcutaneous.

Figure 1 Antitumor efficacy of HER2-DC1 s.c. in combination with anti-HER2 antibodies treatment and host immune response in HER2pos BC model. (A) Wild-type BALB/c mice were injected with 3×10^4 TUBO cells orthotopically into the MFP. After tumor establishments, mice were treated with HER2-DC1 s.c. (1×10^6 cells, s.c., weekly twice for 3 weeks) or anti-HER2 antibodies (clones 7.16.4: 50 µg, 7.9.5: 50 µg, i.p. injection, weekly once) or combination of both. Tumor growth was monitored two times a week (n=8). (B) Survival curve (n=8). Means±SEM. Control versus HER2-DC1 s.c. +7.16.4+7.9.5 (p=0.0031) in (A) and (p<0.0001) in (B), HER2-DC1 s.c. versus HER2-DC1 s.c. +7.16.4+7.9.5 (p<0.0001) in (A) and (p=0.0249) in (B) and 7.16.4+7.9.5 versus HER2-DC1 s.c. +7.16.4+7.9.5 (p<0.0005) in (A) and (p=0.0002) in (B). (C, D) On day 36 after completion of treatments, tumors were excised, single cell suspensions were prepared and stained for CD4+ and CD8+ T cells and myeloid-derived suppressor cells, and then analyzed by flow cytometry. (E) Tumor draining lymph nodes and non-draining lymph nodes were collected from the experimental groups. Then, co-cultured with or without HER2-DC1 individually pulsed with p5, p435 and p1209 for 72 hours. IFN-γ secretion was measured in the culture supernatant using IFN-γ ELISA. (F) Splenocytes were re-stimulated with p5, p435 and p1209 rHER2/neu peptides. IFN-γ secretion was measured in the culture supernatant by ELISA. Control versus HER2-DC1 s.c. +7.16.4+7.9.5 (p<0.0001) in (F). BC, breast cancer; CM, culture medium; HER2, human epidermal growth factor receptor 2; HER2-DC1, HER2 peptide-pulsed type 1 polarized dendritic cell; IFN, interferon; i.p., intraperitoneal; MFP, mammary fat pad; s.c., subcutaneous.

HER2-DC1 i.t. combined with anti-HER2 antibodies treatment requires CD4+ and CD8+ T cells

The level of tumor infiltrating CD4+ T cells was evaluated after completion of all combination treatments. The flow cytometry gating strategy for lymphoid immune cell phenotype is shown in online supplemental figure 3. The HER2-DC1 i.t. combined with anti-HER2 antibodies treatment group had a higher number of tumor infiltrating
CD4+ T cells, compared with the HER2-DC1 s.c. combined with anti-HER2 antibodies treatment group (Figure 3A).

Next, we examined the phenotypic status of tumor infiltrating CD4+ T cells. As shown in Figure 3B–D, increased levels of CD4+CD44+CD62L− effector memory cells, CD4+CD44+CD62L+ central memory cells and CD4+CD44– CD62L– effector cells were observed in tumors from the HER2-DC1 i.t. combined with anti-HER2 antibodies group, compared with the HER2-DC1 s.c. combined with anti-HER2 antibodies group. To test whether CD4+ T cells play a role in HER2-DC1 i.t. in combination with anti-HER2 antibodies treatment mediated anti-tumor activity, a CD4+ T cell depletion experiment was performed. We observed mice that were depleted of CD4+ T cells failed to respond to HER2-DC1 i.t. combined with anti-HER2 antibodies treatment (Figure 3E).

HER2-DC1 i.t. combined with anti-HER2 antibodies treatment was able to enhance tumor infiltration of CD8+ T cells compared with HER2-DC1 s.c. combined with anti-HER2 antibodies treatment (Figure 3F). Next,
we examined the phenotypic status of tumor infiltrating CD8+ T cells. Tumors from the HER2-DC1 i.t. combined with anti-HER2 antibodies treatment group had a significantly increased level of CD8+CD44+CD62L- effector memory cells and CD8+CD44+CD62L+ central memory cells and CD8+CD44-CD62L- effector cells when compared with HER2-DC1 s.c. combined with anti-HER2 antibodies treatment (figure 3G–I). Next, the role of CD8+ T cells were examined, and we found that HER2-DC1 i.t. combined with anti-HER2 antibodies treatment failed to control TUBO tumor growth in the absence of CD8+ T cells (figure 3J). These data suggest that CD4+ and CD8+ T cells are critical for tumor regression induced by HER2-DC1 i.t. and anti-HER2 antibodies combination treatment in HER2+ BC.

HER2-DC1 i.t. in combination with anti-HER2 antibodies treatment attenuates growth of distant untreated tumors

We next investigated whether HER2-DC1 i.t. treatment combined with anti-HER2 antibodies would also trigger a systemic antitumor immunity by using a bilateral TUBO tumor model. HER2-DC1 i.t. was delivered in the primary tumors with or without anti-HER2 antibodies (7.16.4 and 7.9.5) and the growth of untreated distant tumors was monitored. Anti-HER2 antibodies treatment alone had no effect on the growth of primary and distant tumors.
while HER2-DC1 i.t. alone showed minimal antitumor effect on delaying both primary and distant tumors (figure 4A,B). Interestingly, HER2-DC1 i.t. combined with anti-HER2 antibodies (7.16.4 and 7.9.5) treatment significantly attenuated primary tumor and distant tumor growth and improved survival (figure 4A–C).

We then evaluated if the combination treatment-induced systemic antitumor immunity may have been facilitated by trafficking of injected HER2-DC1 into the untreated distant tumors. The flow cytometry gating strategy for identifying CellTrace Violet-labeled HER2-DC1 is shown in online supplemental figure 4. The frequency of CellTrace Violet labeled HER2-DC1 in the treated primary tumors was higher in the HER2-DC1 i.t. alone and the HER2-DC1 i.t. combined with anti-HER2 antibodies treatment groups at 24 and 48 hours (figure 4D), with only 2%–8% being apoptotic cells (online supplemental figure 5A,B). However, we did not observe CellTrace Violet-labeled HER2-DC1 trafficking into the primary tumors from the HER2-DC1 s.c. alone or HER2-DC1 s.c. combined with anti-HER2 antibodies groups (figure 4D).

In the untreated distant tumors, a modest increase in the frequency of CellTrace Violet-labeled HER2-DC1 with no apoptotic cells was observed in the HER2-DC1 i.t. alone and HER2-DC1 i.t. combined with anti-HER2 antibodies groups at 24 and 48 hours (figure 4E, online supplemental figure 5C,D). Although we observed migration of CellTrace Violet-labeled HER2-DC1 into the untreated distant tumors in the HER2-DC1 s.c. alone and HER2-DC1 s.c. combined with anti-HER2 antibodies groups, 25%–45% of HER2-DC1 cells were apoptotic (figure 4E, online supplemental figure 5C,D). In addition, migration of HER2-DC1 into the TDLNs was observed in all groups with minimal changes in the percentage of apoptotic cells (online supplemental figure 6A–C).

Next, we evaluated the i.t. DC subsets in TME of treated and untreated tumors. The flow cytometry gating strategy for identifying i.t. DC subsets is shown in online supplemental figure 7. As shown in figure 4F,H, an increase in the level of conventional DC1 (cDC1) and monocytic DCs (cDC2, conventional DC2; DC, dendritic cell; HER2, human epidermal growth factor receptor 2; HER2-DC1, HER2 peptide-pulsed type 1 polarized dendritic cell; i.t., intratumoral; MoDCs, monocytic DCs; ns, not significant; s.c., subcutaneous; MHC, major histocompatibility complex.}

Figure 4 HER2-DC1 i.t. in combination with anti-HER2 antibodies treatment induce systemic antitumor immunity in HER2pos BC model. (A) Tumor growth curves of treated primary tumors, (B) untreated distant tumors and (C) survival curves in TUBO bilateral tumor model received different treatments as indicated (n=8). Control versus HER2-DC1 i.t.+7.16.4+7.9.5 (p=0.0105) in (A), (p=0.0153) in (B) and (p=0.0002) in (C). HER2-DC1 i.t. versus HER2-DC1 i.t.+7.16.4+7.9.5 (p=0.037) in (A), (p=0.0326) in (B) and (p=0.0047) in (C), 7.16.4+7.9.5 versus HER2-DC1 i.t.+7.16.4+7.9.5 (p=0.0095) in (A), (p=0.0154) in (B) and (p=0.0002) in (C). (D) The frequency of CellTrace Violet labeled HER2-DC1 in the treated primary tumors at 24 and 48 hours. (E) The level of migrated CellTrace Violet labeled HER2-DC1 into the untreated distant tumors at 24 and 48 hours. (F–H) The levels of cDC1, cDC2 and MoDCs in the untreated primary tumors and the untreated distant tumors were evaluated by flow cytometry. Mean±SEM. BC, breast cancer; cDC1, conventional DC1; cDC2, conventional DC2; DC, dendritic cell; HER2, human epidermal growth factor receptor 2; HER2-DC1, HER2 peptide-pulsed type 1 polarized dendritic cell; i.t., intratumoral; MoDCs, monocytic DCs; ns, not significant; s.c., subcutaneous; MHC, major histocompatibility complex.
both the treated primary tumors and the untreated distant tumors from the HER2-DC1 i.t. combined with anti-HER2 antibodies treatment group had a significantly increased level of cDC2 compared with the HER2-DC1 s.c. combined with anti-HER2 antibodies group (figure 4G). The frequency of tumor associated macrophages in the treated primary tumors and the untreated distant tumors were unchanged in both combination treatment groups (online supplemental figure 6D). Together, these results indicate that combination of HER2-DC i.t. and anti-HER2 antibodies increases the frequency of DC subsets in the TME, generates systemic antitumor immunity, and has the potential to attenuate the growth of distant tumors in HER2pos BC.

HER2-DC1 i.t. combined with anti-HER2 antibodies treatment enhances tumor infiltration of B, NKT and NK cells

In addition to the level of tumor infiltrating CD4+ and CD8+ T cells, we also evaluated B cell, NKT cell and NK cells infiltration after HER2-DC1 i.t. and anti-HER2 antibodies combination treatment. As shown in figure 5A, significantly increased accumulation of B cells was observed in the tumors from the HER2-DC1 i.t. and anti-HER2 antibodies combination treatment group, compared with the HER2-DC1 s.c. and anti-HER2 antibodies combination treatment group. In addition, a significant increase in the serum level of interleukin (IL)-4, an important cytokine responsible for activation of mature B cells, was observed in the HER2-DC1 i.t. combined with anti-HER2 antibodies treatment group compared with the HER2-DC1 s.c. combined with anti-HER2 antibodies group (figure 5B). Next, increased levels of NKT cells and NK cells were observed in the tumors of mice that received HER2-DC1 i.t. and anti-HER2 antibodies combination treatment compared with those that received HER2-DC1 s.c. and anti-HER2 antibodies combination treatment (figure 5C,D). The flow cytometry gating strategy for myeloid cells is shown in online supplemental figure 8. HER2-DC1 i.t. or HER2-DC1 s.c. in combination with anti-HER2 antibodies treatment effectively reduced the level of MDSC in tumors, but no changes were observed for M1/M2 macrophages (online supplemental figure 9).

HER2-DC1 i.t. and anti-HER2 antibodies combination treatment require FcγR

ADCC, by triggering FcγRIII on NK cells, is the key mechanism that therapeutic antibodies utilize to act against tumors. To examine whether tumor regression induced by HER2-DC1 i.t. in combination with anti-HER2 antibodies treatment also require ADCC activity, we used FcγR-deficient (FcγRII/III-KO) mice model. Interestingly, antitumor efficacy of the combination treatment with HER2-DC1 i.t. and anti-HER2 antibodies was abrogated and failed to control TUBO tumor growth in FcγR KO mice (figure 5E). This data strongly suggests that ADCC activity is important for antitumor efficacy of HER2-DC1 i.t. and anti-HER antibodies combination treatment in HER2pos BC.

Molecular changes after HER2-DC1 i.t. and anti-HER2 antibodies combination treatment

We examined molecular changes mediated after HER2-DC1 i.t. combined with anti-HER2 antibodies treatment in the HER2pos TUBO tumor model. As expected, HER2-DC1 i.t. in combination with anti-HER2 antibodies enhanced antitumor effects with tumor regression in 80% of mice (figure 6A,B). Importantly, we observed a significant decrease in the level HER2 surface expression in the tumors of HER2-DC1 i.t. and anti-HER2 antibodies combination treatment group compared with HER2-DC1 s.c. and anti-HER2 antibodies combination treatment (figure 6C). In addition, HER2-DC1 i.t. and anti-HER2 antibodies combination treatment reduced expression

Figure 5 HER2-DC1 i.t. in combination with anti-HER2 antibodies treatment induces B, NKT and NK cells tumor infiltration and antibody-dependent cellular cytotoxicity. (A) Tumors from the experimental mice were collected on day 60 after completion of treatments, single cell suspensions were stained for CD19+ B cells as described in the methods and analyzed using flow cytometry. (B) Serum level of IL-4 in the experiment groups was analyzed by Th cytokine flow cytometry array. (C) Level of tumor infiltrating CD3+CD49b (DX-5)+double positive NKT cells. (D) Tumor infiltrating level of CD49b (DX-5)+NK cells. Results were shown as mean±SEM of at least three independent experiments. (E) FcγR KO mice were injected with 3×107 TUBO cells orthotopically into the MFP. After tumor establishment, mice were treated with HER2-DC1 i.t. alone or anti-HER2 antibodies (7.16.4 and 7.9.5) alone or combination of both as described in methods. Tumor growth was monitored two times a week (n=8). Means±SEM. HER2, human epidermal growth factor receptor 2; HER2-DC1, HER2 peptide-pulsed type 1 polarized dendritic cell; IL, interleukin; i.t., intratumoral; MFP, mammary fat pad; NK, natural killer; ns, not significant; s.c., subcutaneous; NKT, natural killer T cells.
and autophosphorylation of HER2 (HER2, p-HER2 Tyr1248, p-HER2 Tyr877 and p-HER2 Tyr1221/1222) in tumors compared with HER2-DC1 i.t. and anti-HER2 antibodies combination treatment or monotherapy (figure 6D). Next, HER2-DC1 i.t. and anti-HER2 antibodies combination treatment induced STAT1 activation (p-STAT1 Tyr701 and p-STAT1 Ser727) and reduced activation of various other intracellular signaling molecules such as p-STAT3, p-STAT5, p-p38 MAPK, p-ERK1/2, p-AKT and p-JAK2 in tumors (figure 6E).

To further test the senescence inducing potential of HER2-DC1 i.t. and anti-HER2 antibodies combination treatment, expression of senescence marker proteins p15 and p16 was examined. Tumors from HER2-DC1 i.t. combined with anti-HER2 antibodies treatment group had increased expression of p15 and p16 proteins compared with HER2-DC1 s.c. combined with anti-HER2 antibodies or monotherapy (figure 6F). The HER2 signaling pathway directly regulates cyclin D1 expression, resulting in cell cycle regulation and cancer cell proliferation.34 As shown in figure 6F, cyclin D1 expression was downregulated after HER2-DC1 i.t. and anti-HER2 antibodies combination treatment. Furthermore, increased expression of apoptosis markers caspase 3 and cleaved caspase 3 in tumors, suggests the additive effect of HER2-DC1 i.t. combined with anti-HER2 antibodies treatment in mediating HER2\(^{\text{pos}}\) tumor regression (figure 6F). Taken together, these data suggest that HER2-DC1 i.t. and anti-HER2 antibodies combination treatment regulates HER2 oncogenic singling pathways.

HER2-DC1 i.t. in combination with anti-HER2 antibodies is more effective than standard chemotherapy paclitaxel with anti-HER2 antibodies treatment

To validate the clinical relevance of HER2-DC1 i.t. treatment in combination with anti-HER2 antibodies, we used...
the CT26 hHER2 tumor model. As shown in figure 7A,B, HER2-DC1 i.t. combined with trastuzumab and pertuzumab treatment showed a more remarkable antitumor response with tumor regression in 65% of treated mice and prolonged survival. The combination of HER2-DC1 i.t. + trastuzumab + pertuzumab and HER2-DC1 i.t. + T-DM1 (p<0.005) in (A) and (p<0.0001) in (B). HER2-DC1 i.t. versus HER2-DC1 i.t. + trastuzumab + pertuzumab and HER2-DC1 i.t. + T-DM1 (p=0.0002) in (A) and (ns) in (B). Trastuzumab + pertuzumab versus HER2-DC1 i.t. + trastuzumab + pertuzumab and HER2-DC1 i.t. + T-DM1 (p=0.004) in (A) and (p<0.001) in (B). T-DM1 versus HER2-DC1 i.t. + trastuzumab + pertuzumab and HER2-DC1 i.t. + T-DM1 (p=0.0002) in (B) and (p<0.0005) in (B). (C) Tumor growth curves and (D) survival curves in CT26 hHER2 bearing tumors in different treatment conditions as indicated (n=6–8). Paclitaxel versus HER2-DC1 i.t. + trastuzumab + pertuzumab (p=0.0022) in (C) and (p<0.0001) in (D). Paclitaxel + trastuzumab + pertuzumab versus HER2-DC1 i.t. + trastuzumab + pertuzumab (p=0.0032) in (C) and (p<0.0001) in (D). HER2, human epidermal growth factor receptor 2; HER2-DC1, HER2 peptide-pulsed type 1 polarized dendritic cell; i.t., intratumoral; ns, not significant; T-DM1, trastuzumab emtansine.

DISCUSSION

HER2 targeted therapies trastuzumab and pertuzumab in combination with chemotherapy in the neoadjuvant setting is effective in a subset of patients with HER20 pos BC, but in parallel hematologic and non-hematologic toxicities have been frequently noted in a substantial fraction of patients.13,14 This suggests that an alternate combination treatment approach is needed to enhance the clinical response and overcome chemotherapy induced toxicities.
in patients with HER2pos BC. This present study describes the antitumor efficacy of HER2-DC1 i.t. combined with anti-HER2 antibodies treatment in three different HER2pos BC models such as the rat HER2 expressing TUBO tumor model, BALB-HER2 transgenic spontaneous tumor model and clinically relevant human HER2 expressing CT26 tumor model. BALB-HER2 transgenic model express rat HER2 and represents human HER2pos BC, which spontaneously develop pre-invasive mammary lesions and progresses to invasive tumors and metastasis.35 The TUBO cells were cloned from a BALB-HER2 transgenic mouse mammary tumors and grew progressively in the mammary gland of wild type BALB/c mice.36 These two models were used to test the antitumor efficacy of HER2-DC1 i.t. combined with anti-rat HER2 antibodies 7.16.4 and 7.9.5 that mimic trastuzumab and pertuzumab, respectively. The CT26 hHER2 was established by engineering CT26 cells to express human HER227 and this tumor model was used to compare the therapeutic efficacy of HER2-DC1 i.t. combined with anti-human HER2 antibodies trastuzumab and pertuzumab or T-DM1 versus chemotherapy paclitaxel combined with trastuzumab and pertuzumab.

Our study shows that HER2-DC1 i.t. combined with anti-HER2 antibodies treatment is more effective than standard chemotherapy paclitaxel combined with anti-HER2 antibodies and induces complete tumor regression in the HER2pos BC model. The superior antitumor response following HER2-DC1 i.t. in combination with anti-HER2 antibodies involves tumor infiltration of CD4+ and CD8+ T cells, B cells, NK cells and NK cells. Although HER2-DC1 s.c. combined with anti-HER2 antibodies treatment reduced tumor burden and improved survival, it was not able to prolong infiltration of immune cells into the tumor and completely arrest tumor growth in a HER2pos BC model. Generation of a strong anti-HER2 Th1 immune response in the tumor draining lymph node, spleen and peripheral blood are critical for the inhibitory effect of the combination treatment with HER2-DC1 i.t. and anti-HER2 antibodies on tumor growth, which was supported by detection of increased Th1 cytokines IFN-\(\gamma\) and TNF-\(\alpha\). However, HER2-DC1 s.c. combined with anti-HER2 antibodies treatment failed to induce enhanced anti-HER2 Th1 immune response in the tumor draining lymph node and peripheral blood, which further supports the inability of generating strong and sustained antitumor immunity for this combination treatment approach in a HER2pos BC model. IFN-\(\gamma\) secreted by tumor-reactive CD4+ Th1 cells and CD8+ cytotoxic T cells exhibit pleiotropic effects during the anti-tumor immune response. The pleiotropic effects of IFN-\(\gamma\) include cell-specific regulation of inflammatory signaling pathways, pro-apoptosis, and cancer cell proliferation arrest.38 In patients with HER2pos BC, sustained secretion of IFN-\(\gamma\) was positively associated with response to the treatment and survival.39 40 Our clinical finding supports this study that restoration of anti-HER2 Th1 immunity using intraslesional or intranodal HER2-DC1 vaccine was able to improve the pCR in patients with HER2pos BC.41

Predominance of CD4+ and CD8+ T cell infiltration into the tumor bed is a positive predictive marker for the outcome of targeted therapies and is associated with a favorable prognosis in patients with BC. Moreover, higher levels of tumor-infiltrating lymphocytes are considered beneficial for the efficacy of trastuzumab treatment in patients with HER2pos BC.42 43 The tumor reactive CD4+ Th1 cells can enhance activation of CD8+ T cells to further potentiate the treatment benefits and improve patient with BC survival.44 Very recently it was observed that cDC1 primarily drives tumor antigen specific CD4+ T cells activation and help the priming and infiltration of cytotoxic CD8+ T cells into the tumors.45 The cDC1 can process and present tumor antigen derived immunogenic peptides to CD4+ T cells via MHC class II/T cell antigen receptor engagement and trigger antitumor specific CD4+ Th1 cells activation in immunologic tumors and solid tumors.46 Our recent findings strongly support the therapeutic benefits of using multiepitope MHC class II tumor antigenic peptides pulsed DC1 therapy in driving CD4+ Th1 immunity in BC subsets.47 Notably, pulsing with MHC class II HER2 peptides p5, p435 and p1209 has been identified to drive anti-HER2 CD4+ Th1 immune response in HER2pos BC.29 41 Previous studies have demonstrated the major advantages of tumor antigen-pulsed DC i.t. delivery in enhancing the efficacy of targeted agents and increasing CD4+ and CD8+ T cell tumor infiltration in patients with advanced stage solid tumors.30 31 Recently, treatment with DC i.t. combined with local radiotherapy has been shown to increase tumor antigen specific CD8+ T cell infiltration in poorly immunogenic preclinical tumor models.32 In this study, high tumor infiltration of CD4+ and CD8+ T cells was observed for HER2-DC1 i.t. combined with anti-HER2 antibodies treatment in the HER2pos BC model. In contrast, synergistic effects of HER2-DC1 i.t. and anti-HER2 antibodies were lost when CD4+ or CD8+ T cells were depleted. This data demonstrates the critical role for CD4+ and CD8+ T cells in HER2-DC1 i.t. plus anti-HER2 antibodies combination treatment for inducing an effective antitumor response in HER2pos BC.

Adoptive immunological memory mediated by tumor reactive CD4+ and CD8+ T cells play a key role in protective immunity to tumor antigens. Activated tumor reactive CD4+ and CD8+ T cells can give rise to effector and memory cells. Memory CD4+ and CD8+ T cells are differentiated into effector memory and central memory subsets. The effector CD4+ and CD8+ T cells may become terminally differentiated and show short-term antitumor effects.48 In contrast, effector memory/central memory CD4+ and CD8+ T cells can provide robust and enduring immunological protection against tumors.49 In the present study, increased accumulation of CD4+ effector memory, central memory and effector T cells was observed in the TME following treatment with HER2-DC1 i.t. in combination with anti-HER2 antibodies. Enhancement of CD8+
central memory T cells was also noted for HER2-DC1 i.t. and anti-HER2 antibodies combination treatment. In this study, enduring antitumor immune response is identified as a key therapeutic feature for HER2-DC1 i.t. combined with anti-HER2 antibodies treatment, supported by rejection of secondary HER2pos tumor challenge and detection of increased levels of both immune stimulatory cytokines and pro-inflammatory chemokines. Previous clinical trials revealed very promising efficacy for combination treatment of IL-12 with trastuzumab with sustained production of immune stimulatory cytokines and IFN-γ in patients with metastatic BC. Immune stimulatory cytokine and chemokine production following immunotherapy contributes to improved tumor antigen priming, driving more effector immune cells including CD4, CD8, NK, NKT and B cells in the TME, and enhancing cytolytic activity.

Our findings suggest that HER2-DC1 i.t. combined with anti-HER2 antibodies treatment also drives high infiltration of NK cells, NKT cells and B cells to further enhance the antitumor immune response in the HER2pos BC model.

Evidence has shown that HER2 targeted antibodies induce ADCC by triggering FcγRIII on NK cells and act against HER2pos disease. A clinical trial showed that trastuzumab induced ADCC with pCR in patients with HER2pos BC. However, loss of ADCC activity for trastuzumab treatment was also noted in patients with metastatic HER2pos BC. DC vaccine therapy in patients with HER2pos metastatic BC elicited production of specific anti-HER2 antibodies and CD4 Th1 immunity resulting in complete response. Our study identified that combination treatment with HER2-DC1 i.t. and anti-HER2 antibodies induces ADCC for the enhanced antitumor response, supported by the failure to block tumor aggression and to induce complete tumor growth arrest in a FcγR KO model. In the HER2pos BC model, high tumor infiltration of NK cells was also noted following HER2-DC1 i.t. and anti-HER2 antibodies combination treatment. Taken together, this study provides evidence that HER2-DC1 i.t. and anti-HER2 antibodies combination treatment also induced ADCC for tumor regression in HER2pos BC.

Other investigators have shown that a DC i.t. treatment approach in combination with local radiotherapy can increase the migration capacity of i.t. injected DC as well as control the growth of treated primary and untreated distant tumors by mediating the frequency of circulatory tumor antigen specific CD8+ T cells. We observed generation of systemic antitumor immunity following combined treatment with HER2-DC i.t. and anti-HER2 antibodies in the HER2pos BC model used, which was evidenced by attenuated growth of untreated distant tumors. Notably, our study identified an increased frequency of HER2-DC1 in the treated primary tumors and their migration, with prolonged survival, into the untreated distant tumors following HER2-DC i.t. and anti-HER2 antibodies combination treatment in a HER2pos BC model. Activation of tumor residing cDC1 in combination with radiotherapy has been shown to be critical to overcome acquired resistance to anti-PD-L1 therapy and enhance i.t. T cell infiltration in poor T cell infiltrating tumor models. An in-situ vaccination (ISV) strategy that activates tumor residing DCs in combination with radiotherapy was reported to induce regression of primary and untreated distant tumors in patients with lymphoma. In addition, i.t. administration of ISV was more effective in recruiting various DC subsets to treated primary and untreated distant tumors compared with s.c. administration, leading to enhanced tumor-associated antigen cross presentation. The increased frequency of cDC2 in untreated distant tumors may drive CD4+ T cells and B cells to control the distant tumor growth. Further studies are required to better understand how HER2-DC1 i.t. in combination with anti-HER2 antibodies treatment induces cDC2 enrichment and contributes to tumor growth arrest in untreated distant tumors in HER2pos BC.

Overexpression and constitutive activation/autophosphorylation of HER2 is associated with more aggressive disease and poor prognosis in patients with HER2pos BC. The activated HER2 protein recruits and regulates various intracellular signaling proteins PI3K/Akt, JAK2, STAT3 and STAT5 to induce cancer cell proliferation, differentiation, and survival in HER2pos BC. Trastuzumab treatment has been shown to block HER2-mediated PI3K/Akt signaling activation in HER2pos BC cells. However, HER2 dependent blockade of PI3K/Akt proteins can lead to compensatory activation of the MAPK/ERK signaling pathway. Importantly, various studies have shown limited inhibitory activity of trastuzumab on HER2 activation/autophosphorylation in HER2pos BC. Our study provides molecular evidence that HER2-DC1 i.t. and anti-HER2 antibodies combination treatment remarkably inhibited expression and activation/autophosphorylation of HER2, resulting in diminished activation of HER2-mediated signaling proteins Akt, JAK2, STAT3, STAT5, MAPK and ERK in the HER2pos BC model. IFN-γ has the potential to mediate degradation of HER2 through a ubiquitin proteasomal pathway in HER2pos BC cells. In combination with anti-HER2 antibodies, trastuzumab and pertuzumab, has been shown to increase senescence and apoptosis via STAT1 signaling activation in HER2pos BC cells. This study provides confirmative evidence for the previous finding that enhanced STAT1 activation was observed following HER2-DC1 i.t. combined with anti-HER2 antibodies treatment in a HER2pos BC model. The HER2 signaling pathway can directly regulate cyclin D1 expression resulting in cell cycle progression and cancer cell proliferation. It has been reported that HER2pos BC cells can escape from HER2-targeted agents trastuzumab, pertuzumab and T-DM1 and acquire defects in the mechanism of apoptosis. In the present study of...
HER2^{pos} BC model, enhanced apoptosis, senescence, and inhibition of cell cycle progression appear to be a beneficial effect of HER2-DC1 i.t. combined with anti-HER2 antibodies treatment, which was supported by increased caspase 3, cleaved-caspase 3, p15 and p16 expression, and reduced expression of cyclin D1.

In summary, we propose that HER2-DC1 i.t. in combination with anti-HER2 antibodies is an effective therapeutic strategy to target HER2-mediated signalling pathways in HER2^{pos} BC. Generation of systemic and enduring anti-tumor immunity and greater inhibition of primary and distant tumors in HER2^{pos} BC can be accomplished with combining HER2-DC1 i.t. and anti-HER2 antibodies. Our data suggest that HER2-DC1 i.t. combined with anti-HER2 antibodies can be tested as an effective alternative therapeutic strategy to standard chemotherapy combined with anti-HER2 antibodies in HER2^{pos} BC, and indeed supports the general notion that targeted, lower toxicity agents can be combined with DC-based immunotherapy to improve therapeutic outcomes. A clinical trial is ongoing to address the feasibility of HER2-DC1 i.t. plus anti-HER2 antibodies in the neoadjuvant setting for patients with HER2^{pos} BC (ClinicalTrials.gov: NCT03387553).

Contributors
GR, KK and BJG conceived and designed experiments. GR, CS and PG performed experiments. GR and BJG contributed to data analysis. KK and BJG supervised the work. GR and RLBC wrote the manuscript. BJG, RLBC, KK, MIG, AB, CG, DW, HSH and GK edited the manuscript. Overall content guarantor: BJC.

Funding
This work was supported by Department of Defense Award #W81XWH-16-1-0385 awarded to BJG. This work was also supported by the H. Lee Moffitt Cancer Center and Research Institute and the Shula Foundation to BJC. This work was supported in part by the Flow Cytometry Core Facility, Analytic Microscopy Core Facility, Tissue Core Facility and Animal Core Facility at the H. Lee Moffitt Cancer Center and Research Institute, an NCI-designated Comprehensive Cancer Center (P30-CA076292).

Competing interests
BJC and GK have a patent application filed for intellectual property on a human version of DC1.

Patient consent for publication
Not applicable.

Ethics approval
Not applicable.

Provenance and peer review
Not commissioned; externally peer reviewed.

Data availability statement
Data are available upon reasonable request. All data relevant to the study are included in the article or uploaded as supplementary information.

Supplemental material
This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ). BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access
This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: http://creativecommons.org/licenses/by/4.0/.

ORCID iDs
Corey Gallen http://orcid.org/0000-0001-5841-9996
Gary Koski http://orcid.org/0000-0002-8703-7767
Brian J Czerniecki http://orcid.org/0000-0003-4519-9570

REFERENCES

Supplemental materials

Intratumoral delivery of dendritic cells plus anti-HER2 therapy triggers both robust systemic antitumor immunity and complete regression in HER2 mammary carcinoma

Ganesan Ramamoorthi¹, Krithika N. Kodumudi¹, Colin Snyder¹, Payal Grover³, Hongtao Zhang³, Mark I. Greene³, Amrita Basu¹, Corey Gallen¹, Doris Wiener¹, Ricardo L.B. Costa², Hyo S. Han², Gary Koski⁴, Brian J. Czerniecki¹,²

Authors affiliations

1 Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
2 Department of Breast Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
3 Department of Pathology and Laboratory Medicine, Perelman Medical School, University of Pennsylvania, Philadelphia, Pennsylvania, USA
4 Department of Biological Sciences, Kent State University, Kent, Ohio, USA

Corresponding Author: Brian J. Czerniecki, Department of Breast Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA

Email: Brian.Czerniecki@moffitt.org
METHODS

Antibodies and reagents

Anti-HER2/neu antibodies 7.16.4 and 7.9.5 that mimic trastuzumab and pertuzumab, respectively, were a gift from Dr. Mark I. Greene (University of Pennsylvania). Anti-HER2/neu antibody clone 7.16.4 (Cat. No. BE0277) was also purchased from BioXCell, West Lebanon, NH. Trastuzumab, pertuzumab, T-DM1 and paclitaxel were obtained from the Infusion Center at H. Lee Moffitt Cancer Center and Research Institute. Anti-mouse CD4 (clone GK1.5, Cat. No. BP0003-1), anti-mouse CD8α (clone 2.43, Cat. No. BE0061) and InVivoMAb rat IgG2b isotype (clone LTF-2, Cat. No. BP0090) were purchased from BioXCell (West Lebanon, NH).

Cell line and culture condition

The TUBO cell line (kindly provided by Dr. Wei Zen Wei, Wayne State University) was derived from a spontaneous mammary carcinoma in BALB-HER2/neu transgenic mice. CT26 expressing human HER2/neu (CT26 hHER2) cell line was a gift from Dr. William E. Carson (The Ohio State University). Cells were cultured in RPMI 1640 medium (Cat. No. MT-10-040-CM, Corning, Corning, NY) supplemented with 10% heat-inactivated FBS (Cat. No. MT35010CV, Fisher Scientific), 1 mM sodium pyruvate (Cat. No. MT-25-000-C1, Corning), 2 mM L-glutamine (Cat. No. 25005CI, Fisher Scientific), 0.1 mM nonessential amino acids (Cat. No. 25-025-CI, Corning), 100 U/mL penicillin and 100 mg/ml streptomycin (Cat. No. MT-30-002-CI, Corning), 50 mg/mL gentamycin (Cat. No. 15750-060, Gibco), 0.5 mg/mL fungizone (Cat. No. 15290018, Gibco), and 0.05 mM 2-mercaptoethanol (Cat. No. 21985-023, Invitrogen). Cells were cultured in a humidified
incubator with 5% CO\textsubscript{2} at 37°C. Cell lines were tested and confirmed negative for mycoplasma (PlasmoTest, Cat. No. rep-pt1, Invitrogen, San Diego, CA) prior to the start of the experiments.

Mouse models

Wild-type female BALB/c mice and C57BL/6 mice at 6-8 weeks of age were purchased from Charles River Laboratories. FcR\(_{\gamma}\)-deficient C.129P2(B6)-Fcer1g\(^{tm1Rav}\) N12 female mice were purchased from Taconic Biosciences and used at the age of 6-8 weeks. BALB-HER2/neu transgenic mice were kindly provided by Dr. Shari Pilon-Thomas (H. Lee Moffitt Cancer Center & Research Institute). All mice were housed at the Animal Research Facility of the H. Lee Moffitt Cancer Center and Research Institute. All mouse studies were reviewed and approved by the Institutional Animal Care and Use Committee at the University of South Florida (#A4100-01). All experiments were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institute of Health.

HER2-DC1 s.c. combined with anti-HER2 antibodies treatment in TUBO tumor model

The TUBO cell line expressing rat HER2 was used to induce mouse mammary carcinoma model for HER2\(^{pos}\) BC. TUBO cells (3x10\(^4\) cells/mouse) were orthotopically injected into the mammary fat pads (MFP) of female BALB/c mice. On day 12 after establishment of tumors, mice were treated with HER2-DC1 s.c. (1x10\(^6\) cells/dose, twice weekly for three weeks) and/or anti-HER2 antibodies (clone 7.16.4: 50μg, 7.9.5: 50μg, intraperitoneal (i.p.) injection, once weekly). Control mice were injected with PBS (s.c.,...
twice weekly). The multi-epitope MHC class II HER2 peptides pulsed DC1 vaccine (HER2-DC1) was prepared as previously described. For combination therapy, tumor bearing mice received one injection of anti-HER2/neu antibodies on day 12. One week after, mice received HER2-DC1 s.c., concurrently with anti-HER2/neu antibodies. Mice were monitored for tumor growth and tumors were measured twice weekly using digital calipers. Tumor volume was calculated using the formula: \(\text{volume (mm}^3) = \text{length} \times \text{width}^2 \div 2 \).

HER2-DC1 i.t. in combination with anti-HER2 antibodies treatment in TUBO tumor model

After TUBO tumor establishment as described above, mice were randomized into the following groups: (1) untreated, (2) HER2-DC1 i.t., (3) anti-HER2 antibodies (7.16.4+7.9.5), (4) 7.16.4 alone (5) 7.9.5 alone, (6) HER2-DC1 i.t. combined with anti-HER2 antibodies (both clones 7.16.4+7.9.5), (7) HER2-DC1 i.t. combined with 7.16.4 alone. For monotherapy, mice received HER2-DC1 i.t. (1x10^6 cells/dose, once weekly for six weeks), anti-HER2 antibodies (7.16.4: 50μg, 7.9.5: 50μg, i.p., once weekly), 7.16.4 alone (100μg, i.p., once weekly) and 7.9.5 alone (100μg, i.p., once weekly). Treatment started on day 12 following tumor injection. For intratumoral (i.t.) delivery, HER2-DC1 (1X10^6 cells/50ul of PBS) were drawn into a 1ml syringe using 18G needle and gradually injected into the measurable (4x4mm) palpable tumor directly using a 27G needle. Untreated mice received i.t. injection of sterile PBS. Combination treatment groups 6 and 7 received anti-HER2 antibodies, either both clones 7.16.4+7.9.5 or clone 7.16.4 alone, respectively, on day 12. One week after, mice received HER2-DC1 i.t.
concurrently with anti-HER2 antibodies, either both clones 7.16.4+7.9.5 or clone 7.16.4 alone. Mice were monitored and tumor volumes were measured as described above.

Allogenic HER2-DC1 i.t. or autologous unpulsed DC1 i.t. in combination with anti-HER2 antibodies treatment in TUBO tumor model

After TUBO tumor establishment in BALB/c mice as described above, mice were randomized into the following groups: (1) untreated, (2) autologous unpulsed DC1 i.t., (3) allogenic HER2-DC1 i.t., (4) autologous unpulsed DC1 i.t. combined with anti-HER2 antibodies (both clones 7.16.4+7.9.5) and (5) allogenic HER2-DC1 i.t combined with anti-HER2 antibodies (both clones 7.16.4+7.9.5). Group 2 received autologous unpulsed DC1 i.t. (generated from BALB/c mice and were not pulsed with multi-epitope MHC class II HER2 peptides) once weekly for six weeks. Group 3 received allogenic HER2-DC1 i.t. (generated from C57BL/6 mice and were pulsed with multi-epitope MHC class II HER2 peptides) once weekly for six weeks. Groups 4 and 5 were treated with autologous unpulsed DC1 i.t. or allogenic HER2-DC1 i.t., respectively in combination with anti-HER2 antibodies. Combination treatments were followed as described above. Mice were monitored and tumor volumes were measured.

BALB-HER2/neu transgenic mice treatments and MRI imaging

We utilized BALB-HER2 transgenic mouse model, a classic model of human HER2^{pos} BC, which express rat HER2. The spontaneous focal mammary carcinoma develops in the mammary glands of these mice that slowly progresses from microscopic lesions to invasive tumors. BALB-HER2/neuT mice at 8-9 weeks of age were given HER2-DC1 i.t. (once weekly for
six weeks), anti-HER2/neu antibodies (both clones 7.16.4+7.9.5, i.p., once weekly) or combination of both. HER2-DC1 i.t. delivery was assisted by ultrasound guidance. Mice were examined for spontaneous tumor growth in mammary glands at different timepoints by magnetic resonance imaging (MRI). Mice were anesthetized with 2% isoflurane delivered in 1.5-liter/min oxygen in an induction chamber. Next, mice were transferred and imaged on a 7-Tesla horizontal MRI scanner (Bruker Biospin, Inc. BioSpec AV3HD) using a 35mm Litzcage coil (Doty Scientific). While imaging, ventilation was provided through a nose cone and respiration range was maintained at a range of 40-60 breaths per minute. The core body temperature was monitored and maintained at 37°C by MRI-compatible Small Rodent Heater System (SAII®, SA Instruments, Stony Brook, NY). Anatomical T2-weighted coronal images were acquired using a TurboRARE sequence with field of view (FOV) = 75x35mm², echo time/repetition time (TR/TE) = 4513/38ms and slice thickness of 1.2mm and 19 slices.

CT26 hHER2 tumor model and treatments

The CT26 cell line expressing human HER2 was used to induce clinically relevant HER2⁺⁺⁺BC and to test the efficacy of HER2-DC1 i.t. combined with anti-HER2 antibodies trastuzumab and pertuzumab treatment or T-DM1. CT26 hHER2 cells (3x10⁵ cells/mouse) were injected subcutaneously (s.c.) into female BALB/c mice. On day 7 after establishment of palpable tumors, mice were treated with HER2-DC1 i.t. (every five days), anti-HER2 antibodies (trastuzumab: 90μg, pertuzumab: 90μg, i.p., every five days) and T-DM1 (180μg, i.p., every five days). For combination treatment, mice received single injection of anti-HER2 antibodies (trastuzumab and pertuzumab) or T-
DM1 on day 7. Five days later, mice received HER2-DC1 i.t. concurrently with anti-HER2 antibodies (trastuzumab and pertuzumab) or T-DM1. Tumor growth was monitored and measured twice weekly.

HER2-DC1 combined with anti-HER2 antibodies versus chemotherapy combined with anti-HER2 antibodies in CT26 hHER2 tumor model

After CT26 hHER2 tumor was established as described above, mice were treated with HER2-DC1 i.t. (every five days), anti-HER2 antibodies (trastuzumab: 90μg, pertuzumab: 90μg, i.p., every five days) and paclitaxel (7.5mg/kg, i.p., every three days). For paclitaxel combined with anti-HER2 antibodies treatment, mice received two injections of paclitaxel followed by concurrent treatment with anti-HER2 antibodies (trastuzumab and pertuzumab). HER2-DC1 i.t. and anti-HER2 antibodies combination treatment was carried out as described above.

TUBO bilateral tumor model and treatments

BALB/c mice were injected s.c. with 2.5x10^5 TUBO cells into both the left and right flank to inoculate primary and distant tumors, respectively. After tumors were palpable, mice were randomized into four groups: (1) untreated, (2) HER2-DC1 i.t., (3) anti-HER2 antibodies (7.16.4+7.9.5) and (4) HER2-DC1 i.t. combined with anti-HER2 antibodies (7.16.4+7.9.5). Treatments were carried out as mentioned above. In groups 2 and 4, HER2-DC1 i.t. was injected only in the primary tumors on the left flank of the mice while the distant tumors on the right flank were left untreated. Tumor size was measured twice a week.

Flow cytometry analysis for host immune cells
After completion of treatments, experimental mice were euthanized, and tumors and spleens were collected under sterile conditions and processed into single-cell suspensions as described previously\(^{29}\). Single cell suspensions of tumors were obtained by an enzymatic dissociation method in 10ml of HBSS (Cat. No. MT-21-022-CM, Fisher Scientific), 1mg/ml collagenase (Cat. No. C9891 and C-5138, Millipore Sigma), 0.1mg/ml DNase I (Cat. No. DN25, Millipore Sigma), and 2.5 U/ml of hyaluronidase (Cat. No. H-6254-1G, Millipore Sigma) for 1 hour at 37\(^\circ\)C with constant stirring to promote dissociation. Red blood cells were then lysed using ACK lysis buffer for 5 minutes at room temperature. 1x10\(^6\) cells were incubated with Live/Dead Zombie near IR (Cat. No. 423106, BioLegend, San Diego, CA) for 30 minutes at room temperature in the dark. Cells were then washed with PBS, resuspended in FACS buffer, and stained with lymphoid immune cell phenotyping antibodies anti-CD45 BUV 395 (Cat. No. 564279, Clone 30-F11, BD Biosciences, San Jose, CA), anti-CD3 APC (Cat. No. 553066, Clone 145-2C11, BD Biosciences), anti-CD4 PerCP-Cy5.5 (Cat. No. 550954, Clone RM4-5, BD Biosciences), anti-CD62L BUV737 Cat. No. 612833, Clone MEL-14, BD Biosciences), anti-CD19 PE/Cyanine7 (Cat. No. 115520, Clone 6D5, BioLegend), and anti-CD49b or DX-5 pan NK PE (Cat. No. 108908, Clone DX5, BioLegend) or myeloid cells antibodies anti-CD45 BUV395 (Cat. No. 564279, Clone 30-F11, BD Biosciences), anti-Gr1 or Anti-Ly-6G and Ly-6C APC (Cat. No. 553129, Clone RB6-8C5, BD Biosciences), anti-CD11b PerCP-Cy5.5 (Cat. No. 550993, Clone M1/70, BD Biosciences), anti-CD11c PE (Cat. No. 117308, Clone N418, BioLegend), anti-F4/80 PE/Cyanine7 (Cat. No. 123114, Clone
BM8, BioLegend), anti-CD80 Pac Blue (Cat. No. 104724, Clone 16-10A1, BioLegend), anti-IA^d FITC (Cat. No. 115006, Clone 39-10-8, BioLegend) and anti-CD206 BV650 (Cat. No. 141723, Clone C086C2, BioLegend) for 30 minutes on ice. After washing with PBS, flow cytometry was performed on an LSRII cytometer (BD Biosciences) and FACS data was analyzed using FlowJo software (FlowJo™, RRID:SCR_008520).

In vivo HER2-DC1 trafficking analysis

HER2-DC1 (1x10⁶ cells) was labeled with CellTrace Violet (Cat. No. C34557, Invitrogen) following manufacturer's instructions and injected into the established TUBO bilateral tumor model. All treatment conditions were followed as described above. Tumors from treated and untreated flanks and tumor-draining lymph nodes (TDLNs) were harvested after 24 and 48 hours of treatment. Following incubation with Live/Dead Zombie near IR, single cell suspensions were stained with a HER2-DC1 trafficking panel CellTrace Violet, anti-CD45 FITC (Cat. No. 11-0451-82, Clone 30-F11, Fisher Scientific), anti-CD11c BV785 (Cat. No. 117336, Clone N418, BioLegend), anti-MHCII PE (Cat. No. 50-5321-U100, Clone M5/114.15.2, Tonbo Biosciences, San Diego, CA) and anti-CD103 APC (Cat. No. 121414, Clone 2E7, BioLegend) or intratumoral DC subsets antibodies anti-CD45 FITC (Cat. No. 11-0451-82, Fisher Scientific), anti-MHCII PE (Cat. No. 50-5321-U100, Tonbo Biosciences), anti-Ly-6G/Ly-6C (Gr-1) PE/Dazzle (Cat. No. 108452, Clone RB6-8C5, BioLegend), anti-CD103 APC (Cat. No. 121414, BioLegend), anti-F4/80 Alexa Fluor 700 (Cat. No. 123130, Clone BM8, BioLegend), anti-CD11b PerCP-Cy5.5 (Cat. No. 550993, Clone M1/70, BD Biosciences), and anti-CD11c BV785 (Cat. No. 117336, Clone N418, BioLegend) and analyzed by flow cytometry as described.
above. Cells were also stained to identify apoptotic cells using APC Annexin V Apoptosis Detection Kit with 7-AAD (Cat. No. 640930, BioLegend) and analyzed using a LSRII or Canto cytometer (BD Biosciences) with FlowJo software (FlowJo™, RRID:SCR_008520).

IFN-γ quantification by ELISA

Single cell suspensions from spleens and inguinal lymph nodes were prepared as described above. To examine the anti-HER2 Th1 immune response generated following treatments, splenocytes (2x10^6 cells) were stimulated with or without multi-epitope MHC class II rat HER2/neu peptides p5 (ELAAWCRWGFLALLPPGIG; 2μg/ml), p435 (IRGRILHDGAYSLTLQGLIH; 2μg/ml) and p1209 (SPPHPSPAFAQDNAFTYYWDQ; 2μg/ml) individually for 72 hours \(^{29}\). In addition, TDLNs and non-draining lymph nodes (NDLNs) (1x10^5 cells) were co-cultured for 72 hours with or without HER2-DC1 (1x10^4 cells) individually pulsed with p5, p435 and p1209. Following incubation, culture supernatants were collected, and floating cells were removed by centrifugation at 1000rpm for 5 minutes. IFN-γ secretion was measured using a commercially available mouse IFN-γ Quantikine ELISA kit (Cat. No. SMIF00, R&D Systems, Minneapolis, MN) following manufacturer’s instructions.

Cytokine and chemokine arrays

Various Th cytokines (IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10, IL-17A and IL-21) and proinflammatory chemokines (RANTES/CCL5, TACR/CCL17, KC/CXCL1, MIG/CXCL9, IP-10/CXCL10, MIP-1α/CCL3 and MDC/CCL22) in serum samples of experimental mice
were measured using LEGENDplex mouse Th cytokine panel detection (Cat. No. 740073, BioLegend), and LEGENDplex mouse proinflammatory chemokine panel detection (Cat. No. 740074, BioLegend) according to the manufacturer’s recommendations.

Immunohistochemistry

Immunohistochemistry was performed as previously described. Briefly, tumor tissues were collected from the experimental mice, fixed in formalin, and embedded in paraffin. Five micrometer thick paraaffin tumor tissue sections were deparaffinized with xylene and rehydrated in graded ethanol. Antigen retrieval was performed using Tris-EDTA buffer and slides were incubated with 3% hydrogen peroxidase for 30 minutes to block endogenous peroxidase activity. Slides were then washed and incubated with 10% normal goat serum in Tris-buffered saline (TBS). Thereafter, slides were incubated with anti-rabbit HER2 antibody (Cat. No. 4290S, Cell Signaling Technologies, Danvers, MA) for overnight. Slides were washed and incubated with secondary antibody labeled with HRP for 1 hour at 37°C. The color development was detected using 3,3'-diaminobenzidine (DAB) and the slides were counter-stained with hematoxylin. Slides were scanned using a Leica Aperio™ AT2 scanner (Vista, CA) at the Microscopy Core Facility at H. Lee Moffitt Cancer Center and Research Institute.

CD4⁺ and CD8⁺ T cell depletion experiments

Anti-CD4 and anti-CD8 antibodies were used to deplete host CD4⁺ and CD8⁺ T cells. Mice were injected with or without 300 ug of depleting antibody (i.p.) twice a week beginning three days prior to TUBO cells (3x10⁴ cells/mouse) inoculation in the MFP.
and was continued until the endpoint. Non-depleted mice were injected i.p. with rat IgG2b isotype antibody. After establishment of TUBO tumors, mice were treated as described above. Tumor volume was measured twice a week.

FcγR KO mice model experiment

FcγR-deficient C.129P2(B6)-Fcer1gtm1Rav N12 female mice were injected with TUBO cells (3x10⁴) orthotopically into the MFP. TUBO tumor bearing mice were treated with HER2-DC1 i.t., anti-HER2 antibodies, or a combination of both as described above.

Western blot analysis

Whole protein extracts from tumor samples were prepared by homogenization in RIPA buffer (Cat. No. 20-188, Millipore, Billerica, MA) mixed with protease inhibitor cocktail (Cat. No. P8340-1ML, Sigma-Aldrich, St. Louis, MO) and phosphatase inhibitor (Cat. No. A32957, Pierce) and incubated for 20 minutes at 4°C. After centrifugation at 14,000rpm for 20 minutes at 4°C, supernatants were collected, and protein concentration was measured by Bradford protein assay (Cat. No. 5000006, Bio-Rad, Hercules, CA). 20-40 µg of protein were run on a 4-12% SDS-PAGE gel (GenScript, Piscataway, NJ) and transferred onto PVDF membranes (Cat. No. IPVH00010, Millipore) using eBlot® L1 wet transfer system (GenScript). The membranes were incubated in 5% (m/v) BSA prepared in Tris-buffered saline buffer-Tween (TBST) and probed with rabbit anti-HER2 (Cat. No. 2165S, Cell Signaling Technologies), rabbit anti-pHER2 Tyr1248 (Cat. No. 2244S, Cell Signaling Technologies), rabbit anti-pHER2 Tyr1221/1222 (Cat. No. 2243S, Cell Signaling Technologies), rabbit anti-pHER2 Tyr877
(Cat. No. 2241S, Cell Signaling Technologies), rabbit anti-pSTAT1 Tyr701 (Cat. No. 9167S, Cell Signaling Technologies), rabbit anti-pSTAT1 Ser727 (Cat. No. 9177S, Cell Signaling Technologies), rabbit anti-pSTAT3 Tyr705 (Cat. No. 9145S, Cell Signaling Technologies), rabbit anti-pSTAT5 Tyr694 (Cat. No. 9351S, Cell Signaling Technologies), rabbit anti-p-P38 MAPK (Thr180/Tyr182; Cat. No. 4511S, Cell Signaling Technologies), rabbit anti-pERK1/2 (Thr202/Tyr204; Cat. No. 9101S, Cell Signaling Technologies), rabbit anti-pAkt (Ser473; Cat. No. 9271S, Cell Signaling Technologies), rabbit anti-PI3K (Cat. No. 4257S, Cell Signaling Technologies), rabbit anti-pJAK2 (Tyr1007/1008; Cat. No. 3776S, Cell Signaling Technologies), rabbit anti-cleaved caspase 3 (Asp175; Cat. No. 9661S, Cell Signaling Technologies), rabbit anti-caspase 3 (Cat. No. 9662S, Cell Signaling Technologies), rabbit anti-cyclin D1 (Cat. No. 2978S, Cell Signaling Technologies), mouse anti-p15 (Cat. No. sc-377412, Santa Cruz Biotechnology, Dallas, TX), rabbit anti-p16 (Cat. No. ab211542, Abcam, Boston, MA) and rabbit anti-β actin (Cat. No. 4967S, Cell Signaling Technologies) antibodies. After washing with TBST, membranes were incubated with goat anti-rabbit IgG HRP (Cat. No. 7074S, Cell Signaling Technologies) or goat anti-mouse IgG HRP (Cat. No. 1721011, Bio-Rad, Hercules, CA) secondary antibodies for one hour at room temperature. Bands were visualized with the Pierce ECL Western Blotting Substrate (Cat. No. 32106, ThermoFisher Scientific) and imaged on an Odyssey Imaging System (LI-COR Biosciences, Lincoln, Nebraska, USA).

Statistical analysis
All data were expressed as mean ± standard error of the mean (SEM). The mean differences of several groups were analyzed using one way analysis of variance (ANOVA) with Tukey’s multiple comparisons post hoc test. The mean differences between two groups were analyzed using an unpaired or paired two-tailed t test. Survival curves were analyzed using the Log-rank (Mantel-Cox) test or Gehan-Breslow-Wilcoxon test. The statistical analyses were performed using GraphPad Prism 8. Data with p value <0.05 were considered statistically significant.
Supplemental figures

A

- IL-2 (pg/ml) with p-values: p=0.016, p=0.015, p<0.05, p<0.05, p=0.034, ns.
- IL-6 (pg/ml) with p-values: p<0.05, p<0.05, p=0.0002, p=0.002, ns.
- IL-17A (pg/ml) with p-values: p<0.05, p<0.05, p<0.05, p=0.0002, ns.
- IL-21 (pg/ml) with p-values: p<0.01, p<0.01, p<0.01, p=0.012, ns.
- IL-10 (pg/ml) with p-values: p<0.001, p<0.01, p<0.05, ns.

B

- RANTES/CCL5 with p-values: p<0.001, p=0.002, p=0.012, p=0.0002, ns.
- MDC/CCL22 with p-values: p<0.001, p<0.05, ns.
- TACR/CCL17 with p-values: p<0.001, p<0.05, ns.
- KC/CXCL1 with p-values: p<0.001, p<0.05, ns.
- MIG/CXCL9 with p-values: p<0.001, p<0.05, ns.
- IP-10/CXCL10 with p-values: p<0.001, p<0.05, ns.
- MIP-1α/CCL3 with p-values: p<0.001, p<0.05, ns.

Supplemental Figure 1 Serum level of Th1 cytokines and chemokines. (A) Th1 cytokines IL-2, IL-6, IL-17A, IL-10 and IL-21 levels in the serum of TUBO tumor bearing mice receiving different treatments as indicated. (B) Proinflammatory chemokines RANTES/CCL5, TACR/CCL17, KC/CXCL1, MIG/CXCL9, IP-10/CXCL10, MIP-1α/CCL3 and MDC/CCL22 levels in the serum of TUBO tumor bearing mice that received different treatments as indicated. Mean ± SEM. i.t., intratumoral; s.c., subcutaneous; ns., not significant.
Supplemental Figure 2 Serum level of Th1 cytokines and chemokines in immune mice that are cured by HER2-DC i.t in combination with anti-HER2 antibodies treatment and rejected secondary TUBO tumor challenge. (A) Th cytokines IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10, IL-17A and IL-21 in the serum of immune mice. (B) Proinflammatory chemokines RANTES/CCL5, TACR/CCL17, KC/CXCL1, MIG/CXCL9, IP-10/CXCL10, MIP-1α/CCL3 and MDC/CCL22 levels in the serum of immune mice.
Supplemental Figure 3 Gating strategy for identifying CD3+CD4+ T cells, CD4*CD44*CD62L- effector memory cells, CD4*CD44*CD62L+ central memory cells, CD4*CD44*CD62L- effector cells, CD3+CD8+ T cells, CD8*CD44*CD62L- effector memory cells, CD8*CD44*CD62L+ central memory cells, CD8*CD44*CD62L- effector cells, CD3+DX5+(CD49b+) NKT cells, DX5+(CD49b+) CD3- NK cells and CD19+ B cells among CD45+ cells in the tumors of experimental groups.
Supplemental Figure 4 Gating strategy for identifying CellTrace Violet labeled HER2-DC1 (CD45$^+$CellTrace Violet$^+$CD11c$^+$MHCII$^+$CD103$^+$) in the treated primary tumors and untreated distant tumors and TDLNs of experimental groups. CTV., CellTrace Violet.
Supplemental Figure 5 Detection of apoptotic cells among the migrated CellTrace Violet labeled HER2-DC1. (A, B) The percent apoptotic cells among the detected CellTrace Violet labeled HER2-DC1 in treated primary tumors at 24 and 48 hours was analyzed by flow cytometry. (C, D) The percent apoptotic cells among the migrated CellTrace Violet labeled HER2-DC1 in untreated distant tumors at 24 and 48 hours was analyzed by flow cytometry.
Supplemental Figure 6 (A, B) level of migrated CellTrace Violet labeled HER2-DC1 in TDLNs of experimental groups at 24 and 48 hours was analyzed by flow cytometry. (C) The percent apoptotic cells among the migrated CellTrace Violet labeled HER2-DC1 in TDLNs at 24 and 48 hours. (D) TAM level in the TME of treated primary tumors and untreated distant tumors was analyzed by flow cytometry. TDLNs., tumor draining lymph nodes; TAM., tumor associated macrophages; TME., tumor microenvironment; ns., not significant.
Supplemental Figure 7 Gating strategy for identifying cDC1 (CD45+CD11c+CD11b−MHCII+CD103+), cDC2 (CD45+CD11b−Gr1−F4/80−CD11c+MHCII+), MoDCs (CD45+CD11b−Gr1+highCD11c+MHCII+) and TAM (CD45+CD11b−Gr1−F4/80+) in the treated primary tumors and untreated distant tumors of experimental groups. cDC1., conventional DC1; cDC2., conventional DC2; MoDCs., monocytic DCs; TAM., tumor associated macrophages.
Supplemental Figure 8 Gating strategy for identifying MDSCs (CD11b+Gr1+), M1 (F4/80+IAd+CD80+CD206-) macrophages and M2 (F4/80+CD206+) macrophages among CD45+ cells in the tumors of experimental groups.
Supplemental Figure 9 Effect of HER2/neu-DC1 in combination with anti-HER2/neu antibodies treatment on MDSCs and M1/M2 macrophages. (A) MDSCs level in the tumors of experimental groups was analyzed by flow cytometry. Mean ± SEM. Control versus HER2/neu-DC1 i.t.+7.16.4+7.9.5 (p=0.0042). HER2/neu-DC1 s.c.+7.16.4+7.9.5 versus HER2/neu-DC1 i.t.+7.16.4+7.9.5 (ns). (B) Level of M1 and M2 macrophages in the tumors of experimental groups was analyzed by flow cytometry. Mean ± SEM. Control versus HER2/neu-DC1 i.t.+7.16.4+7.9.5 (p=0.02). HER2/neu-DC1 s.c.+7.16.4+7.9.5 versus HER2/neu-DC1 i.t.+7.16.4+7.9.5 (ns). i.t., intratumoral; s.c., subcutaneous; ns., not significant.
Supplemental Figure 10 Effect of chemotherapy paclitaxel in HER2pos TUBO tumor model. BALB/c mice bearing TUBO tumors were treated with paclitaxel or anti-HER2 antibodies ((both clones 7.16.4+7.9.5) or left untreated as described in methods. Tumor growth was monitored two time a week (n=6). ns., not significant.
Graphical abstract

Intratumoral delivery of dendritic cells plus anti-HER2 therapy triggers both robust systemic antitumor immunity and complete regression in HER2 mammary carcinoma

Authors
Ganesan Ramamoorthi, Krithika N. Kodumudi, Colin Snyder, Payal Grover, Hongtao Zhang, Mark I. Greene, Amrita Basu, Corey Gallen, Doris Wiener, Ricardo L.B. Costa, Hyo S. Han, Gary Koski, Brian J. Czerniecki

Correspondence
brian.czerniecki@moffitt.org

In Brief
Intratumoral delivery of HER2-DC1 plus anti-HER2 antibodies generated robust systemic anti-tumor immunity which rendered tumor regression of treated tumors as well as untreated distant tumors and effectively modulated HER2 oncogenic signaling pathways in HER2 breast cancer. This combination treatment was more effective than standard chemotherapy with anti-HER2 antibodies.