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with the small-molecule inhibitor 69 exhibited a response 
similar to atezolizumab that was used as the clinically rele-
vant control (figure  6B–E). Moreover, only slight body 
weight changes were registered during the study, relative 
to the mouse initial body weight, which is an important 
indication for a potential absence of systemic toxicity 
(figure 6F). At the day 30 the animals were euthanized to 
characterize the TME by FACS analysis. The tumor growth 
was directly correlated with PD-L1 levels, as the decrease 
in PD-L1 was associated with the reduced tumor volumes. 
These results were accompanied by a higher infiltration 
of T cells (figure 6G). In addition, a significant increase 
on cytotoxic CD8+ tumor-infiltrating lymphocytes was 
induced by the small molecule treatment (p<0.001), 
while the levels of the regulatory T cells (Treg) were 
significantly lower than the ones quantified in the tumors 
of the atezolizumab-treated mice (figure 6G).

DISCUSSION
The discovery of small molecules as immune checkpoint 
inhibitors has been suggested as a promising approach to 
overcome the limitations of currently available therapeu-
tics. However, they are technically difficult to identify and 
assess. Together with a challenging design, the limited 
structural elucidation of the targets has been compro-
mising the development of PD-1/PD-L1 small-molecule 
inhibitors. Before 2015, no human PD-1/PD-L1 X-ray 
structure was resolved and the murine form does not 
allow the assessment of the extent of plasticity or inter-
actions established with the PD-L1.28 In the last years, 
several human PD-1 and PD-L1 X-ray structures have 
been resolved to expose the murine/human structural 
differences within the binding modes between proteins, 
as well as the plasticity in the complex formation.28 The 
advances in PD-1/PD-L1 structural characterization 

Figure 5  CD8+ T-cell infiltration into 3D melanoma spheroids. Co-culture of 3D tumor spheroids of cells obtained from surgical 
resection of melanoma and peripheral blood mononuclear cell (PBMC). Cells grew together in reduced growth factor Matrigel. 
The spheres and PBMC were either not treated or treated with anti-PD-L1 (αPD-L1) or small-molecule inhibitor 69. The CD8+ 
T-cell infiltration (green) was evaluated 72 hours after co-culture by confocal microscopy. Scale bar=100 µm. MFI, mean 
fluorescence intensity; PBS, phosphate buffered saline; PD-L1, programmed cell death ligand 1; 3D, three-dimensional.  on S
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anticipated an astonishing progress on the develop-
ment of small-molecule inhibitors. However, the design 
of inhibitors directly targeting the PD-1/PD-L1 inter-
action interface has been limited by the larger, hydro-
phobic, and flat interface between proteins without deep 
binding pockets. Recently, different X-ray structures of 

PD-L1 with a class of small-molecule inhibitors have been 
resolved.23 29 BMS compounds were the first non-peptide-
based compounds able to inhibit the PD-1/PD-L1 interac-
tion, however, they are reported as compounds with poor 
drug-like properties.29 In general, these inhibitors bind to 
PD-L1 leading to a deep cylindrical, hydrophobic pocket 

Figure 6  PD-1/PD-L1 small-molecule inhibitor recruits cytotoxic CD8 T cells into the tumor microenvironment. (A) Timeline 
(days) of tumor inoculation and treatments. (B–C) Tumor growth curve of PD-1 humanized mice implanted with MC38 cell line 
expressing humanized PD-L1. Animals were treated with small-molecule inhibitor 69 and atezolizumab (10 mg/kg intraperitoneal 
for 10 daily doses days 12–21 or three times per week days 12–21. N=6 mice. (D) Mice individual tumor volumes (mm3) at 
endpoint day (Day 30). P values correspond to tumor volume at day 30 after the tumor inoculation. (E) Representative tumor 
images of each treatment group (vehicle, atezolizumab, SM 69). (F) Mice individual body weight change, expressed as per cent 
change from the day 1 of treatment. N=6 mice per group. (G) Tumor-infiltrating lymphocytes, regulatory T cells (Treg), and PD-1/
PD-L1 quantification. Tumors cells were isolated on day 30 after the tumor inoculation. The quantification was performed by 
flow cytometry. Data are presented as mean±SD, N=3 mice. Statistical analysis: one-way analysis of variance and Tukey’s post 
test. FACS, fluorescence-activated cell sorting; PD-1, programmed cell death protein 1; PD-L1, PD ligand 1; SM 69, small-
molecule inhibitor 69.
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created by the interface of two monomers (figure  1A). 
These structures provided the perfect starting point for a 
rational structure-based drug design approach.

Here we reported a successful in silico approach that 
guided us through a rational design of PD-1/PD-L1 
small-molecule inhibitors based on the structural infor-
mation reported. In silico studies (structure-based virtual 
screening using molecular docking) led to the selection 
of 95 virtual hits presenting good spatial fitting within the 
PD-L1 pocket, high score values, key interaction to pocket 
residues, as well as good ADMET (administration, distri-
bution, metabolism, excretion, and toxicity) properties. 
The hit validation achieved 16 (17%) compounds using 
a standard biochemical fluorescence-based PD-1/PD-L1 
binding assay. Looking into our rational, we expected 
that the validated hits would bind to PD-L1 similarly to 
the BMS inhibitors. The compound-binding to PD-L1 
was confirmed by the stabilizing effect observed by DSF 
(figure 3A) and by WaterLOGSY NMR experiment30 31 for 
the most promising small-molecule inhibitor 69 (online 
supplemental figure 5).

As we moved forward in this discovery of new small-
molecule inhibitors towards the characterization of their 
biological effect, we realized that the type of assays already 
developed and available to validate the effect of PD-1/
PD-L1 small-molecule inhibitors are highly limited. These 
experiments make use of the biochemical assays on hit 
validation and/or engineered cells to artificially express 
PD-L1.32 33 Here, we applied those biochemical assays to 
first validate out small molecule hits, but we decided to 
further evaluate the compounds’ activity exploiting our 
2D and 3D models based on naturally expressing PD-L1 
cells. Initially, two different types of human cancer cell 
lines (breast cancer and melanoma) were thus selected to 
perform the in vitro studies looking at the impact of our 
hit compounds on the PD-L1/PD-1 interaction. The basis 
for cell line selection was the remarkable results obtained 
in highly immunogenic tumors, as melanoma,34 35 and 
the exciting outcomes in the treatment of other tumors 
reported as poorly immunogenic, such as breast cancer.36 
The in vitro studies showed that our PD-L1 binding small 
molecules were able to considerably impact PD-L1 levels 
in both breast cancer (MDA-MB-231) and melanoma 
(A375) cell lines. In contrast, a less meaningful effect 
was observed using the BMS202 small-molecule inhibitor 
(figure 3E). Therefore, this compound was not used in 
our subsequent ex vivo and in vivo studies, since it has 
poor drug-like properties29 and its effect on PD-1/PD-L1 
interaction was not pronounced.

To further address the ultimate role of the most prom-
ising small-molecule inhibitors in T-cell activation, we 
developed 2D and 3D co-culture studies of paired matched 
patient-derived tumor cells and PBMC. The close collabo-
ration with two hospitals (the national oncology hospital 
Instituto Português de Oncologia Lisboa and Hospital de Santa 
Maria) allowed us to get freshly isolated samples from 
patients with cancer (under approved IRB UC/1310 and 
1085/13). Only tumor cells and PBMC of the same patient 

were co-cultured to ensure that an HLA-mismatch reac-
tion did not occur, as well as to overcome the subsequent 
unspecific T-cell activation. In contrast to tumor cell lines, 
patient-specific model systems are proving to be a most 
valuable tool in the field of immuno-oncology due to the 
inherent diversity of the disease and the multifactorial 
nature of T cell-mediated tumor destruction.37 In these 
experiments, it was possible to provide a proof of concept 
that samples treated with the most promising PD-1/PD-L1 
inhibitor could activate T cells by inhibiting this pathway 
(figure  4B–F). Besides, the co-culture of 3D melanoma 
spheroids and PBMC demonstrated the capacity of small 
molecules to promote T-cell infiltration (figure 5). The 
higher levels of T-cell infiltration may be explained by the 
possibility offered by small molecules, as opposed to anti-
bodies, to target PD-L1 of distinct sources and locations. 
Recently, several studies have demonstrated that there are 
different cellular sources for PD-L1 (eg, dendritic cells, or 
tumor infiltrating lymphocytes), in addition to intracel-
lular PD-L1 that antibody-based drugs cannot target.38–42 
Thus, using a small-molecule approach, ‘any’ PD-L1 can 
be targeted despite its cellular or cytoplasmic location. 
This is one of the most significant advantages of small 
molecules over monoclonal antibodies.

Finally, to extend the clinical relevance of our ex vivo 
findings, we have tested the small-molecule inhibitor 
using a human-relevant in vivo model. Accordingly, 
humanized PD-1 mice developed by inserting a chimeric 
PD-1 with a human extracellular domain in the mouse 
PD-1 locus,43 were implanted with the colorectal cancer 
MC38 cells expressing the human PD-L1 (figure 6A). This 
study showed that our small molecule-controlled tumor 
growth at the same level as the clinically relevant control, 
atezolizumab (figure 6B,C). The immunophenotyping of 
the tumors also revealed that mice treated with the small-
molecule inhibitor 69 presented higher infiltration of 
CD3+ T cells and recruited a significant number of cyto-
toxic T lymphocytes (CTL) (figure 6G). In addition, the 
mice treated with the small-molecule inhibitor recruited 
fewer Treg when compared with animals treated with 
atezolizumab contributing to a slighter immunosuppres-
sive TME (figure 6G). Taken together, our results demon-
strate that the compound 69, exhibiting the phenanthrene 
scaffold, inhibits the PD-1/PD-L1 interaction, leads to 
the activation of T-cell function, and ultimately recruits 
CTL to the TME, which resulted in a strong control of 
tumor growth. Although small molecules usually need to 
be regularly administrated or at higher concentrations 
when compared with monoclonal antibodies, our small-
molecule inhibitor induced an overall effect on tumor 
growth and related T-cell activation equal to or higher 
than the clinically-relevant αPD-L1 (atezolizumab), on its 
administration at the same dose and by the same admin-
istration route. Our findings showed that small molecules 
can be effective as monoclonal antibodies, but addition-
ally allow a considerably higher infiltration of CTL into 
the tumor, supporting the promising clinical translation 
of these small-molecule candidates.
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CONCLUSIONS
There are different immune checkpoint modulators 
currently in clinical use that have revolutionized cancer 
therapy. Despite their remarkable clinical outcomes, low 
response rates, adverse effects, and acquired resistance 
suggest that the full potential of the immune checkpoint 
blockade has yet to be fulfilled.

Through this work, we were able to highlight and 
demonstrate on 2D and 3D ex vivo multicellular mela-
noma and breast cancer models and in vivo that the of 
use PD-1/PD-L1 small-molecule inhibitors may present 
unique advantages over monoclonal antibodies currently 
used in the clinic. Our results showed that our small 
molecule drug candidates inhibit the PD-1/PD-L1 inter-
action, and lead to the activation of T cells. The possi-
bility of immune checkpoint modulation following a 
small molecule-based approach can revolutionize immu-
notherapeutic approaches by overcoming some of the 
monoclonal antibody limitations, such as limited TME 
diffusion, in addition to targeting other cellular sources of 
PD-L1 that are critical to achieve better clinical outcomes. 
Besides, small molecules are generally less expensive to 
produce, making them accessible to many. Therefore, 
these small-molecule drug candidates are promising tools 
and potential off-the-shelf products to enhance immune 
checkpoint clinical outcomes.
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