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Figure 6  Multiplex IHC reveals immune system distribution of tumor microenvironment in tumor tissues. (A) Representative 
staining results from multiplex IHC assay of CD4, CD8, Foxp3, CTLA-4, CD11b, and Gr-1 in tumor tissues of mice. (B,C) Counts 
and percentage of total T cells per area (mm2) of tumor-infiltrating T-cell phenotypes by multiplex IHC in tumor tissues of 
mice. (D,E) Boxplots showing median cell counts per area (mm2) of CD8+ T cell:Treg (CD3+CD4+Foxp3+) ratio and MDSCs 
(CD11b+Gr-1+) obtained from five treatment conditions. Statistical significance derived from Kruskal-Wallis teats was compared 
using the stat compare means function, and the overall significance is indicated by the p value. ***P<0.0001 in χ2 test of one-
way analysis of variance. CTLA-4, cytotoxic T lymphocyte-associated antigen-4; HSP, heat shock protein; HSP90, heat shock 
protein 90; IHC, immunohistochemistry; MDSC, myeloid-derived suppressor cell; N.S, not significant; STING, stimulator of 
interferon genes; Treg, regulatory T.
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risk of recurrence of HER2+ and HER2−/ER+ breast 
cancer subtypes.38

HSP90 has long been studied as a target for cancer ther-
apeutics because of its pivotal role in maturation of client 
oncoproteins in cancer cells. Moreover, its role in antigen 
presentation with MHC I on APCs and cross-priming 
has led to research using a combination of HSP90 and 
immune checkpoint inhibitors.39 In the development of 
cancer vaccine, HSP90 has served as a carrier protein in 
the form of autologous purified HSP vaccines combined 
with tumor antigens and has shown promising activity in 
patients with advanced cancer.37 40 In our study, we found 
high levels of HSP90-specific autoantibodies in patients 
with advanced-stage breast cancer irrespective of subtype 
(figure 1). Of interest, different subtypes of IgG responses 
were observed in patients with HER2+ breast cancer; and 
IgG1 in early stage versus IgG3 in patients with metastatic 
cancer. Based on the findings, we subsequently identified 
Th1-directed epitopes using a previously established plat-
form.21 22 Identification of promiscuous sequences across 
the most common MHC II molecules and subsequent 
exclusion of IL-10-inducing sequences enabled us to 
select the two promising epitopes for the vaccine. These 
approaches can overcome the limitation of autologous 
tumor-derived vaccines, that is, inducing Treg cells.37 41 In 
addition, the use of specific epitopes can solve practical 
issues associated with immunological monitoring, deter-
mination of dosing and schedule in clinical trials.

To investigate whether the HSP90 vaccine can be used 
for therapeutic purposes in advanced breast cancer, we 
used a murine model of HER2+ and estrogen recep-
tor-low MMTVneu-transgenic mice with established 
tumors before immunization. As the growth inhibitory 
effect and antigen-specific T-cell response by HSP90 
peptides alone were not enough in the established tumor 
model (figure 4B,D), the STING agonist was added for 
the first combination to enhance the antitumor immu-
nity by vaccine. The combination of HSP90 peptides and 
STING agonist showed a moderate growth inhibitory 
effect on tumor growth, with the animals surviving for 
significantly longer (figure 4). The improved antitumor 
effect was associated with augmented HSP90-specific 
T-cell responses, but also T-cell response to another 
epitope than immunized HSP90: HER2. STING agonists 
appeared to have a short-term tumor growth inhibitory 
effect similar to that of vaccines. However, its effect was 
inferior to that of the combination of HSP90 vaccine and 
STING agonist in terms of survival. Non-specific immu-
nity by STING agonist alone led to acquired tolerance, 
leading to a catch-up growth of the tumors (figure 4B,C). 
On the other hand, animals immunized with HSP90 
peptides and STING agonist survived longer by the 
mechanisms of enhanced HSP90-specific immunity and 
epitope spreading (figure 4E). In addition to the systemic 
immune responses, quality of the expanded T cells in 
tumor microenvironment was further investigated by the 
TCR sequencing and showed that STING agonist has a 
significant synergy with HSP90 peptides in increasing 

TCR diversity (figure  4F). Previous studies have shown 
that the STING signaling pathway promotes or induces 
innate and adaptive immune responses.42 Stimulated 
APCs and upregulated type I IFN subsequently acti-
vate immune cells for T-cell priming.43 44 Thus, innate 
immune sensing through the STING signaling pathway is 
critical for enhancing the optimal antitumor effect of the 
vaccine. Using a MMTVneu-transgenic mouse model, we 
showed that combination therapy using HSP90 peptides 
and STING agonist could survive mice with advanced 
tumors longer via enhanced efficacy of HSP90 vaccine 
(figure 4). Our data further verify the favorable role of 
STING agonist in inducing Th1 immune response for 
advanced cancer treatment.

Given the synergy between the HSP90 peptide vaccine 
and the STING agonist, we explored the efficacy of anti-
CTLA-4 Ab as part of a triple combination. Although 
anti-CTLA-4 antibodies are currently being evaluated 
in clinical trials in breast cancer, we questioned if it can 
enhance antitumor immunity via better antigen presen-
tation as previously described.32 In the established tumor 
model, HSP90 vaccine only showed a limited antitumor 
efficacy, but combination with anti-CTLA-4 Ab showed 
significant improvement. Of note, the triple combination 
had the greatest synergy, resulting in significant tumor 
regression by 40 days of observation (figure  5B). In 
terms of systemic T-cell immunity, combination with anti-
CTLA-4 Ab did not increase antigen-specific immunity 
to HSP90, but further combination with STING agonist 
enhanced antigen-specific immunity to HSP90, also to 
unimmunized epitope, HER-2. On the other hand, anti-
CTLA-4 Ab was effective in decreasing Treg cells in tumor 
microenvironment, then increasing the ratio of CD8+ T 
cells:Tregs (figure  6B,D). Interestingly, the dual combi-
nation of STING agonist and anti-CTLA-4 showed good 
synergy in tumor inhibition, but there was no systemic 
antigen-specific T-cell expansion or CD8 T-cell recruit-
ment in tumor microenvironment. CTLA-4 is a costimu-
latory signal expressed by activated T cells and dampens 
T-cell responses. Thus, anti-CTLA-4 Ab is known to elim-
inate the immunosuppressive propagation of Treg-cell 
activation and to enhance antitumor immunity via better 
cross-priming by APCs, leading to effective antitumor 
responses.32 45 In the present study, induction of effector 
T cells using the HSP90 peptide vaccine also recruited 
more Tregs, but the regulatory mechanism was success-
fully controlled by adding anti-CTLA-4 Ab (figure 6D).

One of the important mechanisms for the synergy 
between the HSP90 peptides and STING agonist was 
the phenomenon of ‘epitope spreading’. Cancer immu-
notherapy not only produces immune response against 
a specific target antigen but can also work partially 
through epitope spreading.46 The expanded immune 
response is not limited to the molecules derived from 
the vaccine (intramolecular) but to the other oncogenic 
proteins (inter-molecular). Previous work has shown 
that epitope spreading was associated with antitumor 
effects in peptide-based cancer immunotherapy and has 
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been found to improve therapeutic effects. In this study, 
we observed that intermolecular epitope spreading to 
other oncogenic proteins such as HER2 and c-MET was 
induced by STING agonist rather than by anti-CTLA-4 
Ab. This phenomenon in systemic immune response was 
concordant with an increase in CD8+ T cells and produc-
tive TCRß rearrangements of TILs and finally resulted 
in better antitumor efficacy. Thus, our study provides 
scientific data for therapeutic strategy in combining 
of STING agonist and/or anti-CTLA-4 Ab to maximize 
the effect of HSP90 peptides in advanced HER2+ breast 
cancer.

In conclusion, we have provided the first preclinical 
evidence supporting the mechanism of action of HSP90 
peptide vaccine with a distinct potential to improve 
the treatment of breast cancer. Our data also suggest 
that combination therapy with HSP90 peptides, STING 
agonist, and/or anti-CTLA-4 Ab is a promising immuno-
logical strategy in patients with advanced HER2+ breast 
cancer and various cancers. A phase I clinical trial using 
the HSP90 peptide vaccine is currently under way.
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