P09.01 SINGLE-CELL TRANSCRIPTOMIC ATLAS-GUIDED DEVELOPMENT OF CHIMERIC ANTIGEN-RECEPTOR (T) CELLS FOR THE TREATMENT OF ACUTE MYELOID LEUKEMIA

A Gottschlich, 2,3 M Thomas, 1 R Grünmeier, 1 S Lesch, 1,4,5 Rohrbacher, 1 V Igli, 1 D Brukhovetska, 1 M Benmebarek, 5 S Dede, 1 K Müller, 1 S Xu, 1 D Dhogina, 1 O Umut, 1 F Märkl, 2,4,6,7 Robinson, 1 A Sendelhofert, 1 H Schultz, 1,10 L Bick, 8 L Calhina, 9 R Babene, 9 N Röder, 9 F Rajat, 9 M Nürsch, 1,9 Wellbrock, 12,13 F Modemann, 1,12 W Fiedler, 1,12 H Kellner, 1 T Herold, 1,10 M Paquet, 10,11,15 Jeremias, 11,14,16 H von Baumgarten, 1,11,15 Endres, 4,5,11 M Subklewe, 4,15 C Mars, 1,11,17 S Kobold. 1 Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany; 2 Institute of All for Health, Helmholtz Munich, Neuherberg, Germany; 3 School of Life Sciences Wertherstapfen, Technical University of Munich, Freising, Germany; 4 Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; 5 Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany; 6 Department of Neurology, University Hospital, LMU Munich, Munich, Germany; 7 Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; 8 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; 9 Institute of Pathology, LMU Munich, Munich, Germany; 10 Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Munich, German Research Center for Environmental Health (HMGU), Munich, Germany; 11 German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany; 12 Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 13 Millered School Cancer Career Center, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 14 Department of Transfusion Medicine, Cell Therapeutics and Hemostasiology, University Hospital, LMU Munich, Munich, Germany; 15 Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany; 16 Department of Neurosurgery, LMU Munich, Munich, Germany; 17 Einheit für Klinische Pharmakologie (EKLP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany.

Background While chimeric-antigen receptor (CAR) T cells have revolutionized the treatment of refractory B cell malignancies, they have yet to achieve success in the treatment of acute myeloid leukemia (AML).1 In AML, development of CAR therapy is hindered by expression of AML-associated antigens also on pivotal healthy tissues (e.g. hematopoietic stem and progenitor cells, HSPC). The revolution in single-cell technologies has generated massive expression data, providing precise information on the transcriptomic anatomy of healthy and malignant cells.2 However, these resources have rarely been used for de novo antigen predictions. We hypothesized that we could use these technologies to establish high resolution antigen projections, enabling the identification of novel target structures. Hence, we leveraged an atlas of RNA sequencing data of over 500,000 single cells from AML patients and healthy human tissues for target identification and subsequent testing of novel target structures for CAR T cell therapy.

Materials and Methods 12 single cell data sets were harmonized and used for target prediction. Anti-murine and anti-human CAR constructs targeting the lead candidate - colony-stimulating factor 1 receptor (CSF1R) - were generated and transduced into primary murine and human T cells. AML cell lines and primary AML samples were used to verify expression of CSF1R and as target cell lines in vitro and in vivo. Off-target toxicities of CAR were analyzed in vitro and in vivo using a variety of different models.

Results Using a newly developed single-cell RNA sequencing-based screening algorithm, CSF1R was identified as a promising target antigen for CAR T cell therapy in AML. Expression of CSF1R was verified on a large panel of AML cell lines and in primary AML samples. Newly developed anti-CSF1R-CAR T cells efficiently lysed AML target cells in vitro. In vivo, anti-CSF1R-CAR T cells induced strong and sustained remissions in cell line- and patient-derived xenograft models. Compared to anti-CD33-CAR T cells, anti-CSF1R-CAR T cells did not lyse healthy HSPC and proved to be safe when used in fully syngeneic mice models.

Conclusions Aided by our screening algorithm, we identified CSF1R as a new promising target for CAR therapy in AML and proved the efficacy of newly developed CAR T cells. Our results highlight the remarkable translational potential of unbiased, high-resolution target screenings for cancer entities and warrant further clinical investigations of newly developed anti-CSF1R-CAR T cells.