TUMOR-INFILTRATING MUCOSAL-ASSOCIATED IN Variant T CELLS (MAIT) FROM PATIENTS WITH PANCREATIC CANCER RECOGNIZE SHARED TUMOR ANTIGENS IN AN MR1-RESTRICTED FASHION

1Jessica Kamikii, 1Patricia António, 1Rodrigo Eduardo, 1Sara Cascais, 1Bernardo Marinheiro, 1Andrea Maia, 1Eric De Sousa, 1Joana Lerais, 1Carolina Gorgulho, 1Mireia Castillo-Martín, 1Markus Buechler, 1Antonio Beltran, 2Carlos Carvalho, 2Ridong Chen, 1Sam Jeong, 1Andreia Maia, 1Eric De Sousa, 1Joana Lerias, 1Carolina Gorgulho, 1Mireia Castillo-Martin, 1Jéssica Kamiki*, 1Patrícia António, 1Rodrigo Eduardo, 1Sara Cascais, 1Bernardo Marinheiro, 1Champalimaud Foundation, Lisbon, Portugal; 2Human Cell Inc., Napperville, IL, United States

Background Pancreatic adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of 10%. Standard chemotherapeutics have failed to produce relevant increased survival for patients with pancreatic cancer. Cellular immunotherapies are a viable option to achieve anti-tumor directed clinically relevant treatment modalities. Mucosal-associated invariant T-cells (MAIT) are defined by the restricted usage of the invariant Vα7.2 T-cell receptor (TCR) α-chain combined with different TCR β-chains that bridge innate and adaptive immune responses. MAIT produce pro-inflammatory cytokines and are present in primary and metastatic cancer lesions. MAIT may contribute to control tumor-infiltrating lymphocytes (TIL) from patients with PDAC.

Methods MAIT were identified in PDAC specimens by immunohistology. Freshly harvested tumor specimen allowed to expand TILs from patients with PDAC and to selectively isolate MAIT by immunomagnetic sorting. MR1-restricted recognition and cancer specificity was tested in an autologous tumor cell recognition model- blocked by antibodies against MR1 and in a MR1+ allogeneic tumoral cell line. Tumor cells were depleted with anti-CD107a degranulation assay. The majority of MAIT resided in the effector-memory pool (CD45-CCR7-) and tested positive for CD8, CD161 and TCR Vα7.2. Reactivity against a panel of candidate bacteria associated with MR1+ allogeneic tumor cell line via MR1-siRNA downregulation defined by IFN-γ production. Flow cytometry and ELISAs. Deep TCR-sequencing of tumor tissue was performed to gauge TCR diversity and spatial transcriptomics to localize Vα7.2+ cells associated with MR1 and immune effector gene expression.

Results PDAC lesions are positive for MR1 and Vα7.2+ cells defined by immunohistology and spatial transcriptomics. MAIT were isolated and found to be specifically reactive against autologous tumor determined by IFN-γ and IL-17A production. The majority of MAIT reside in the effector-memory pool (CD45-CCR7-) and tested positive for CD8, CD161 and CD26. Reactivity against a panel of candidate bacteria associated with patient survival was confirmed by cytotoxicity and a CD107a degranulation assay.

Conclusions MAIT infiltrate into PDAC lesions, they recognize the tumor in a MR1-restricted fashion defined by IFN-γ release and cytokine production could be augmented by a defined set of bacterial species. MAIT represent biologically relevant immune cells that may aid to kill cancer cells. Anti-tumor directed TCRs can be used as a molecular blueprint to construct anti-cancer directed transgenic immune cells restricted by commonly shared MR1.

Acknowledgements The work was sponsored by the Champalimaud Foundation and assisted by the Champalimaud Biobank and Vivarium.

References

Ethics approval This study was approved by the Champalimaud Foundation Ethics Committee and by Ethics Research Committee of NOVA Medical School of NOVA University of Lisbon.

Consent For each patient, written informed consent and approval by the Ethical Committee of the Champalimaud Foundation will be obtained. The study will be in compliance with the Declaration of Helsinki.