LANDSCAPE ANALYSIS OF THE NEOEPITOPE-SPECIFIC T CELL RESPONSES IN PATIENTS WITH AND WITHOUT CLINICAL BENEFIT FROM IMMUNE CHECKPOINT BLOCKADE THERAPY

1Cristina Puig Saus*, 2Barbara Sennino, 3Songming Peng, 2Zheng Pan, 2Benjamin Yuen, 2Bhamini Purandare, 3Kyle Jacoby, 2Oliver Dalmas, 2Duo An, 3Bai Quach, 2Clifford Wang, 2Huilinping Xia, 2Sameeha Jilani, 4Diana Nguyen, 2Kevin Shao, 2Claire McHugh, 2John Greer, 2Phillip Peabody, 2Sapanya Nayak, 2Jonathan Hoover, 2Sara Said, 2Susan Foy, 2Andrew Conroy, 2Michael Yi, 7Christine Sheeh, 2William Lu, 2Katherine Heeringa, 2Yan Ma, 2Shahab Chizari, 2Melissa Pilling, 2Marc Ting, 2Ramya Tunuguntla, 2Salemiz Sandoval, 2Robert Moot, 2Theresa Hunter, 3Sidi Zhao, 1Justin Saco, 1Ivan Perez-Garcilaso, 1Agustin Vega-Crespo, 1Ignacio Baselga, 1Gabriel Abri-Rodriguez, 1Grace Cherry, 1Deborah Wong, 1Jasreet Hundal, 1Bartosz Chmielowski, 1Daniel Speiser, 1Michael Bethune, 4Xiaoyan Bao, 4Alena Gros, 4Obi Griffith, 4Malachi Griffith, 4James Heath, 4Alex Franzusoff, 2Stefanie Mandl, 1Antoni Ribas. 1University of California, Los Angeles, Los Angeles, CA, USA; 2PACT Pharma, South San Francisco, CA, USA; 3Washington University School of Medicine, St. Louis, USA; 4VHIO, Barcelona, Spain; 5Institute for Systems Biology, Pasadena, CA, USA

Background The primary target of T-cell responses to cancer cells are peptides derived from non-synonymous mutations presented by HLA. However, the large diversity of HLA alleles and restricted availability of clinical samples has limited the study of the antigenic determinants recognized by T cells (termed neoepitopes) at the scale needed for a landscape analysis of antitumor immune responses in patients.

Methods We applied a newly developed technology to perform a longitudinal landscape analysis of the neoepitope-specific T cells in peripheral blood and tumor from 11 patients with metastatic melanoma, 7 with response (R) or 4 with no response (NR) to immune checkpoint blockade (ICB) immunotherapy. Briefly, based on the computational prediction of patient-specific putative neoepitopes, hundreds of capture reagents were made consisting of the patient HLA class I subtypes loaded with the corresponding predicted neoepitope; neoepitope-specific T cells were then isolated, and the TCR alpha and beta sequenced. The tumor reactivity of the isolated neoepitope-specific TCRs (neoTCR) was assessed upon coculture of autologous melanoma cell lines from each patient with primary human T cells expressing the neoTCRs generated using a CRISPR-based non-viral precision genome engineering to replace the endogenous TCRs.

Results The tumor mutation burden ranged between 2562 and 54 and 297 to 31 for patients with R and NR, respectively. We screened an average of 157 (range 243 to 17) predicted neoepitope-HLA per patient across their 6 HLA molecules, and isolated neoTCRs in all 11 patients. The number of mutations targeted ranged between 13 and 1. We assessed tumor reactivity in samples from 3 R and 3 NR; 39 of the 64 neoTCRs demonstrated specific recognition and cytotoxicity to patient-matched melanoma cell lines from each patient with primary human T cells expressing the neoTCRs generated using a CRISPR-based non-viral precision genome engineering to replace the endogenous TCRs.

Conclusions Effective ICB therapy is associated with polyclonal neoepitope-specific T cell responses in the tumor and blood that recognize a limited number of immunodominant mutations and are recurrently recognized over time.

Ethics Approval Patients with metastatic melanoma were selected as they signed an informed consent to collect PBMC and tumour biopsies while receiving therapy with anti-PD-1 therapy alone or in combination with other drugs. Biopsies and blood samples were collected under the University of California, Los Angeles (UCLA) Institutional Review Board approvals 11–003254.