Abstracts

1311 THE MELANOMA TUMOR MICROBIOME AS A PREDICTOR OF OUTCOMES IN PATIENTS WITH METASTATIC DISEASE TREATED WITH IMMUNE CHECKPOINT INHIBITORS

Caroline Wheeler*, Rebecca Hoyd, Aik Choon Tan, Nili Urich, Gabriel Tiroco, Dwight Owen, Jennifer Osa, Martin McCarter, Vinkleeth Sukithan, Alexandria Isekuchi, Carlos Chan, Youssef Zakharia, Rebecca Dodel, Sheetal Hardikar, George Weiner, Youngchul Kim, Ning Jin, Yunzhou Liu, Nicholas Denko, Marium Husain, John Carpent, Eric Singer, Larry Robinson, William (Bill) Dalton, Michelle Churchman, Daniel Spakowicz, Ahmad Tarhini. The Ohio State University, Columbus, OH, USA; Moffitt Cancer Center, Tampa, FL, USA; University of Utah, Salt Lake City, UT, USA; University of Colorado, Aurora, CO, USA; The University of Oklahoma, Oklahoma City, OK, USA; University of Iowa, Iowa City, IA, USA; University of Iowa, Holden Cancer Center, Iowa City, IA, USA; University of Southern California, Los Angeles, CA, USA; Rutgers Cancer Institute of New Jersey, Belle Mead, NJ, USA; M2Gen, Tampa, FL, USA

Background Emerging evidence supports an important role for the tumor microbiome in relation to oncogenesis, cancer immune phenotype, cancer progression and treatment outcomes in a number of malignancies. In this study, we investigated the metastatic melanoma tumor microbiome and potential roles in association with clinical outcomes, such as survival, in patients with metastatic disease treated with immune checkpoint inhibitors (ICIs).

Methods Baseline tumor samples were collected from 71 patients with metastatic melanoma prior to treatment with ICIs. Bulk RNA-seq was conducted on the FFPE tumor samples. Clinical outcome following ICI treatment was evaluated as overall survival (> 24 versus < 24 months). The RNA-seq reads were processed to carefully identify exogenous sequences using ExoTIC (Exogenous sequences in Tumor and Immune Cells). Reads that did not align to the human reference genome were filtered of (1) common laboratory contaminants, (2) taxa that inversely correlate with input RNA quantity, and (3) taxa commonly found in the negative controls of microbiome experiments. DESeq2 was used to perform a differential abundance analysis on the comparison groups at every taxonomic level.

Results The 71 patients with metastatic melanoma ranged in age from 24 to 83 years, 59% were male, and 55% survived > 24 months following the initiation of ICI treatment. Exogenous taxa were identified in the tumor RNAseq, including bacteria, fungi, and viruses (figure 1). Within the tumors responsive to immunotherapy (> 24 months survival), we found a significant enrichment of several microbes, including Fusobacterium nucleatum, Porphyromonas asaccharolytica, Nocardioides mangyaensis, and Mollivirus sibericum. Comparatively, the cohort of non-responsive tumors (< 24 months survival) was found to have a significant intra-tumoral enrichment of Fungi, as well as the bacteria Delftia lacustris, Enterobacter hormaechei, Pseudomonas fluorescens, and Moraxella osloensis (figure 2).

Conclusions In investigating the melanoma tumor microbiome utilizing baseline tumors (prior to initiating ICI) we found significant variations in the exogenous taxa associated with patient outcomes following ICI treatment. Our findings warrant further investigations and potentially support therapeutic strategies to modify the tumor microbiome in order to improve treatment outcomes with ICIs. Ongoing research is evaluating whether these correlations are causally associated with outcomes and evaluating their effect on the tumor immune microenvironment and immune cell infiltration.

REFERENCES

Abstract 1311 Figure 1 A stacked bar plot showing the relative abundances of exogenous taxa found in tumor RNAseq. Taxa are shown on the phylum level and are ordered by the relative abundance of <i>Uroviricota</i>.

Abstract 1311 Figure 2 Differential abundance analysis of taxa found within tumor RNAseq data by the exotic pipeline. Colored points represent significantly (p-value < 0.05) enriched taxa with a high (>1.00) fold-difference in abundance between the groups.