MULTIOMICS AND MULTIMODAL ANALYSIS APPROACH TO CONSTRUCT A DIFFUSE LARGE B-CELL LYMPHOMA ATLAS OF TUMOR MICROENVIRONMENT FOR PREDICTIVE MODELING

Mike Mattei, Regis Perbost, Sarah Turcan, Corinne Danan, Frederick Locke, Sativa Neelapu, David Miklos, Caron Jacobson, Lazaros Lekakis, Yi Lin, Armin Ghobadi, Jenny Kim, Ziying Wang, Allen Xue, Simone Filosto, Nathalie Scholler, Jérôme Galon, Kitte, a Gilde Company, Santa Monica, CA, USA; Veracyte, Marseille, France; Moffitt Cancer Center, Tampa, FL, USA; MD Anderson Cancer Center, Houston, TX, USA; Stanford University School of Medicine, Stanford, CA, USA; Dana-Farber Cancer Institute, Boston, MA, USA; University of Miami Health System, Sylvester Comprehensive Cancer Center, Miami, FL, USA; Mayo Clinic, Rochester, MN, USA; Washington University School of Medicine, St. Louis, MO, USA; Veracyte, INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, Équipe Labelisée Ligue Contre le Cancer, Laboratory of Integrative Cancer Immunology, Marseille, Paris, France

Background

Expansion of therapeutic strategies against diffuse large B-cell lymphoma (DLBCL) offers new opportunities to fight aggressive non-Hodgkin’s lymphoma. To unveil mechanisms driving cancer evolution and tumor immune contexture from a personalized medicine and diagnostic assay perspective, we sought to build a first-in-class reference database. Using a high-quality testing and innovative multimodal and integrative approach, the first Veracyte Biopharma Atlas for DLBCL evaluated thousands of parameters across more than 150 pre-treatment DLBCL lesions and enabled us to precisely map the spectrum of tumor microenvironments across samples and to establish a robust unsupervised descriptive model. By projecting new specimens associated to relevant clinical information and sample data onto the referential map, Atlas analysis provides a detailed description of the tumor microenvironment and facilitates the development of predictive and prognostic tools.

Methods

Veracyte Biopharma Atlas characterizes the tumor microenvironment by analyzing information from 3 different modalities: (i) proteomics (Brightplex® panels), (ii) transcriptomics (RNA sequencing and hybridization using Nanostring technology), (iii) genomics (somatic mutations by exome sequencing and/or the rearrangement of the V(D)J regions of the CDR3 receptor of T cells). The specificity, complexity and volume of the information generated required the development of mathematical and bioinformatics processing to extract relevant biological information. The Veracyte Biopharma Atlas innovative approach combines linear (multimodal factor analysis) and non-linear (self-organizing maps) approaches with graphical representation of the data. Finally, the incorporation of clinical annotation, either from samples used to generate the map or from clinical specimens projected onto the Atlas, made it possible to identify specific patterns predictive of a clinical parameter of interest (eg, response or toxicity).

Results

Gene expression profiling, genomic analysis and proteomics by multiplex spatial technology were performed on more than 150 DLBCL samples collected at diagnosis. Using a centralized multimodal integrative approach, data were analyzed to capture DLBCL immune contexture. Multimodal analysis allowing multifactor integration was used to derive a unique Atlas map and identify key features. Baseline and screening samples from axicabtagene ciloleucel (axi-cel) anti-CD19 chimeric antigen receptor (CAR) T-cell treated patients from the pivotal ZUMA-1 trial were analyzed with the same multi-omics integrative approach. Projection of ZUMA-1 immune contexture data onto the Atlas map revealed actionable information related to patients receiving CAR-T-cell treatment.

Conclusions

Projection of CAR-T clinical trial data highlighted the Veracyte Biopharma Atlas as a powerful tool to stratify patients and identify key immune biomarkers linked to response to CAR T-cell therapy.

Ethics Approval

The study protocol for the single-arm, multi-center, registrational ZUMA-1 study of axi-cel in patients with relapsed LBCL was previously described. Each study site’s institutional review board reviewed and approved the study protocol and amendments, and all patients provided written informed consent. The study was done according to the International Conference on Harmonisation Good Clinical Practice guidelines. Patients in the ZUMA-1 study did not receive compensation for their participation in the study.

REFERENCES
