A2B694, AN AUTOLOGOUS LOGIC-GATED CELL THERAPY TARGETING MESOTHELIN

1Julian Molina, 2Talar Tokatlian*, 3Jason Wang, 2Sharzi Sharma, 3Diane Manny, 2Martin Naradikian, 2Grace Asuelime, 2Breanna DiAndreth, 4Aaron Winters, 2Tisha San Miguel, 2Armen Mardiros, 3Sandip Patel, 6Edward Garon, 5Diane Simone, 5Scott Kopetz, 5Maria Fia Morelli, 6Theodore Welling, 7Kedar Kirtane, 7Eric Ng, 2John Welch, 7David Maloney, 2William Go, 10Alexander Kamb, 2Agi Hamburger, 1Randolph Hecht, 9Fred Hutchinson Cancer Research Center, Seattle, WA, USA; 2A2 Biotherapeutics Inc., Agoura Hills, CA, USA; 2University of California San Diego, La Jolla, CA, USA; 2University of California at Los Angeles, Los Angeles, CA, USA; 2New York University Langone Health, New York, NY, USA; 2University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Mayo Clinic Cancer Center, Scottsdale, AZ, USA; 2Lee Moffit Cancer Center, Tampa, FL, USA; 2Fred Hutchinson Cancer Research Center, Seattle, WA, USA; 3A2 Biotherapeutics Inc., Westlake Village, CA, USA

Background Mesothelin (MSLN) is expressed on a variety of solid tumors, including mesothelioma and ovarian, uterine, gastric, pancreatic, and lung cancers.1 However, efforts to target MSLN using cellular therapies have been hampered by severe on-target, off-tumor toxicities associated with damage to normal tissues expressing MSLN.2 To avoid these toxicities, we have developed a logic-gated engineered cell therapy, Tmod™, which is composed of two chimeric antigen receptors (CARs): an activator that targets a tumor-associated antigen and an inhibitory receptor (blocker) gated by an antigen expressed on normal tissue but lost in tumor cells due to loss of heterozygosity (LOH). A2B694 is an MSLN-specific Tmod construct combining a third-generation MSLN CAR with an LIR-1-based inhibitory receptor specific for human leukocyte antigen A*02 (HLA-A*02).

Methods Lentivirus encoding i) the CAR, ii) the blocker, and iii) an shRNA targeting β2M was used to transduce T cells from HLA-A*02 donors and generate MSLN Tmod cells. In vitro cytotoxicity measurements were performed using fluorescence-based imaging and luciferase readouts. In vivo assessments were performed in NSG mice subcutaneously implanted with “normal” cells (MSLN[A-][A*02-][+]), or tumor cells (MSLN[A-][A*02-][+]), in the left and right flanks, respectively. Following engraftment, mice were randomized and treated intravenously with MSLN Tmod cells or controls. Grafts were measured via caliper.

Results MSLN Tmod cells preferentially killed tumor cells (MSLN[A-][A*02-][+]) over “normal” cells (MSLN[A+][A*02+][+]) in vitro, unlike clinically active comparator M5 CAR T cells, which indiscriminately killed both target cell types (figure 1A). Soluble MSLN, tested across a 0.0-2 µg/mL range, did not impact MSLN Tmod function. Additionally, in mixed cell cultures where T cells and tumor and “normal” cells were simultaneously cultured (1:1:1 ratio), MSLN Tmod cells selectively killed tumor targets while sparing “normal” cells. Further, MSLN Tmod cells cycled between activated and blocked states in vitro when repeatedly challenged with tumor or “normal” target cells. Finally, while MSLN CAR T cells killed both “normal” and tumor grafts in vivo, MSLN Tmod cells selectively killed tumor grafts while sparing “normal” grafts (figure 1B, C).

Conclusions A2B694 is an autologous MSLN Tmod cell product that leverages LOH at the HLA locus in cancer cells, providing a mechanism to discriminate between normal and tumor cells. BASECAMP-1 (NCT04981119), an observational study that will identify patients with somatic HLA LOH, is currently recruiting. Eligible patients with metastatic colorectal, pancreatic, or non-small cell lung cancer will be apheresed for a future A2B694 interventional study (EVEREST-2).

REFERENCES

Figure 1. MSLN Tmod demonstrates selective killing of tumor vs “normal” cells in vitro and in vivo

Abstract 263 Figure 1