ANTI-TIGIT ANTIBODY TIRAGOLUMAB LEVERAGES MYELOID CELLS AND REGULATORY T CELLS TO IMPROVE PD-L1 CHECKPOINT BLOCKADE

1Namrata Patil*, 1Raymond Meng, 1Robert Johnston, 1Patrick Chang, 1Shyam Srivats, 1Yoonha Choi, 1Xiangnan Guan, 1Barzin Nabet, 1Lisa McGinnis, 1Eugene Chiang, 1Thinh Pham, 1Alexis Dunkle, 1Bill O’Gorman, 1Ira Mellman, 1Ruzozen Hu, 1John Silva, 1Joy Han, 1Amelia Au-Yeung, 1Chikara Takahashi, 1Nandini Molden, 1Fallavi Dagumati, 1Wendy Connolly, 1Melissa Johnson, 1Delvys Rodriguez Abreu, 1Byoung Chul Cho, 1Antoine Italiano, 1Ignacio Gil Baz, 1Enriqueta Felip, 1Sanjeev Mariathasan, 1Carlos Bais, 1David Shames. Genentech Inc., South San Francisco, CA, United States; 2Sarah Cannon Research Institute, Nashville, TN, United States; 3Hospital Universitario Insular, Las Palmas, Spain; 4Yonsei University College of Medicine, Seoul, Korea, Republic of; 5Institut Bergonie CLCC Bordeaux, Bordeaux, France; 6Clínica Universidad de Navarra, Pamplona, Spain; 7Vall d’Hebron Institute of Oncology, Barcelona, Spain

Background TIGIT is a co-inhibitory receptor and immune checkpoint associated with T cell and natural killer (NK) cell dysfunction in cancer. Tiragolumab is an anti-TIGIT antibody with an active, IgG1/kappa Fc. In a randomized double-blind phase 2 clinical trial in non-small cell lung cancer (NSCLC), tiragolumab + atezolizumab (anti-PD-L1) combination treatment demonstrated significant improvement relative to atezolizumab alone. However, the mechanisms underlying efficacy of this combination are not well understood.

Results Here, we show that tiragolumab functions as both a conventional checkpoint inhibitor and, via Fc gamma receptor (FcgR) engagement, as a modulator of immunosuppressive myeloid cells and T regulatory (Treg) cells. High levels of these cell subsets, which often mediate resistance to immunotherapy, were associated with treatment benefit in the tiragolumab + atezolizumab arm but not atezolizumab arm. Patients receiving the combination treatment exhibited transient on-treatment increases in serum proteins suggestive of myeloid cell activation, and decreases in circulating Treg cells. In preclinical experiments, treatment with Fc-active anti-TIGIT led to effector T cell and NK cell activation, Treg reduction, and proinflammatory modulation of myeloid cells and neutrophils.

Conclusions These findings reveal distinct mechanisms by which tiragolumab unleashes antitumor immune responses, and inform further clinical development of anti-TIGIT therapies.

Trial Registration NCT03563716

Ethics Approval Protocol approval was obtained from independent ethics committees for each participating site for both studies and an independent data monitoring committee reviewed the safety data.