








10 Di Roio A, et al. J Immunother Cancer 2023;11:e007733. doi:10.1136/jitc-2023-007733

Open access�

into responders (RCB-I/RCB-II), and non-responders 
(RCB III). Of note, patients with pCR could not be 
included in this analysis due to the absence of remaining 
tumor tissue. The proportion of CD4+ TA-T cells among 
total TA-T cells was strongly reduced (by two-fold) in 
responding patients (figure 7A,B) and a reduction even 
though not significant was also observed for TA-Treg cells 
(figure  7C). Interestingly, MDR1+ TA-memory CD4+ T 
cells, Th1.17 and Th17 cells, but not Th1 cells, were signifi-
cantly enriched in responding patients (figure 7D,E).

Finally, we assessed whether the treatment-induced 
changes in blood CD4+ Th cell composition were associ-
ated with response to chemotherapy. Within the Breast-
Immun cohort (online supplemental table 1, figure 7F) 
we highlighted, after two cycles of chemotherapy, a signif-
icant T2/T1 fold-change increase in MDR1+ Th cells 
(figure 7G) but also in Th1.17 and Th17 cells (figure 7H) 
according to RCB. In contrast, no differences were 
observed for Th1 cells. Moreover T2/T1 fold-change of 
Th cells producing IFN-γ only, IFN-γ/IL-17A and IL-17A 
only (figure  7I) were also increased in patients with 

RCB-0/pCR compared with those with RCB-III, values for 
RCB-I/II being intermediate.

DISCUSSION
Transcriptome analysis of MDR1+ TA-Th cells isolated 
from untreated tumors confirms their Th1.17 and Th17 
hallmarks. Moreover, analysis by scRNAseq of blood 
memory CD4+ T cells confirmed that ABCB1+ cells are 
enriched in Th1.17 and Th17 clusters. In line with our 
results, a small subset of Th17 cells also expressing MDR1 
(Rh123neg) was also detected apart from the major Th1.17 
population in CD.9

Interestingly, while CD161 is expressed by MDR1+ Th 
cells, its expression is strongly reduced in the TME which 
might be the result of TCR engagement as described 
recently.36 However, the reanalysis of scRNA-seq BC 
public data sets as well as the FC analysis of NAC-treated 
BC tumor samples failed to identify activated or prolifer-
ating cells within MDR1+ TA-Th cells. Alternatively, CD161 
downregulation could also result from the presence of 

Figure 6  Analysis of ICP and proliferation capacity of MDR1+ CD4+ Th cells in the NAC-treated breast tumor environment 
(A) Expression of ICP on MDR1+ and MDR1neg Th cells from NAC-treated breast tumors (n=5). (B) Compared Ki67 expression 
of Th cells, Tregregulatory T cells and CD8+ T cells in the tumor environment of NAC-treated tumors (n=4). (C) CD73 expression 
on MDR1+ and MDR1neg Th cells from NAC-treated tumors (n=4). (D) Differential expression of CD161 on MDR1+ and MDR1neg 
Th cells in blood (n=4) and tumor environment (n=5) of patients with NAC-treated BC. BC, breast cancer; MDR1, multidrug 
resistance-1; NAC, neoadjuvant chemotherapy; Th, T helper cells.
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TGF-β1 in the TME (online supplemental figure 7B).36 
Finally, the elevated IL-18Rβ expression on MDR1+ Th 
cells detected in our RNA-seq data set could suggest their 
capacity to respond to IL-18 contributing to the downreg-
ulation of CD161 in the TME.37 In this context, significant 

IL-18 levels were detected in STM (online supplemental 
figure 7B).

Figure 7  Response to chemotherapy is associated with an increase in MDR1+ Th, Th1.17 and Th17 cells in the TMEtumor 
microenvironment and an increase in IFN-γ++IL-17A+ and IL-17A+ producing cells in the blood. (A–E) Comparison of TA-T cell 
subsets from patients with NAC-treated BC according to their response to chemotherapy (response: RCB I-II; no response: 
RCB III): proportions of TA-T cells (A) CD4+ TA-T cells (B) MDR1+ cells (C) TA-Treg (D) and TA-Th subsets (phenotypically) (E). F–
I) Evolution of blood cell proportions under treatment (ratio (T2/T1) in patients with BC from Breast-Immun cohort, according 
to their response to NAC: blood sample collection scheme in the Breast-Immun cohort (F). Evolution of the ratio (T2/T1) of 
MDR1+ cells (G) Th1, Th1.17 and Th17 cells (H) (G) and IFN-γ+IL-17Aneg, IFN-γ+IL-17A+, IFN-γnegIL-17A+ after PMA/ionomycin 
reactivation (I). Statistical analyses: Mann-Whitney (A to E); Kruskal-Wallis (G to I) (*p<0.05, **p<0.005). BC, breast cancer; IFN, 
interferon; IL, interleukin; MDR1, multidrug resistance-1; NAC, neoadjuvant chemotherapy; PBMC, peripheral blood cells; pCR, 
pathological complete response; RCB, residual cancer burden; TA, tumor associated; Th, T helper cells.
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MDR1 expression confers a survival advantage for CD8+ and 
polyfunctional CD4+ Th cells in response to NAC treatment at 
the expense of Treg cells
As recently reported in BC treated by adjuvant chemo-
therapy,38 NAC treatment induces a significant enrich-
ment in blood and TA-CD8+ T cells and TA-CD4+ TCM 
in both prospective and Breast-Immun cohorts at the 
expense of Treg and naïve CD4+ T cells. The expres-
sion pattern of MDR1 on CD4+ and CD8+ T-cell subsets 
provides a mechanistic explanation to these observa-
tions, with a particular decrease in naïve T cells described 
in patients with metastatic BC treated by docetaxel, an 
MDR1 substrate.39 These different data sets are consistent 
with the in vitro impact of paclitaxel on total CD4+ T cells, 
which favors a strong enrichment in memory Th cells at 
the expense of naïve cells, due to their lack of MDR1 
expression. We also confirm in vivo, the higher sensitivity 
of Treg cells to MDR1 substrate after two cycles of NAC.

We also highlight, using a public RNA-seq data set,21 
the Th1.17 enrichment in tumors after one cycle of NAC. 
This correlates with our data showing a higher propor-
tion of tumor supernatants from NAC-treated tumors that 
contain both IFN-γ and IL-17A as compared with UT.

The enrichment in MDR1+CD4+ Th cells observed in 
the TME further implements the scarce existing data 
reporting the modulation of T-cell subsets in the TME of 
patients with NAC-treated BC as most of them focused, 
mainly by immunohistochemistry or transcriptomic anal-
yses, on total TILs.40–42 MDR1 is likely responsible for the 
observed enrichment in “Th17 like” cells including both 
Th1.17 and Th17 cells recently reported in BC after adju-
vant chemotherapy.38

We also highlight a significant increase in CCL20 and 
CXCL9 levels in STM from NAC-treated patients (online 
supplemental figure 7B), possibly associated with the 
increase in MDR1+CD4+ TA-Th cells. Indeed, CCL20 
is a potent chemoattractant of Th17 and Th1.17 cells, 
both expressing high levels of CCR6 and CXCL9 is one 
of the three CXCR3 ligands favoring the recruitment 
of Th1 and Th1.17 cell subsets. Of interest, a positive 
correlation between high CXCL9 mRNA levels and signif-
icant increased pCR rate41 or relapse-free survival40 was 
reported in tumors from patients with NAC-treated BC.

Enrichment in MDR1+ Th cells and Th17/Th1.17 cells in the 
TME and blood correlates with the therapeutic efficacy of NAC 
treatment
Using the Breast-Immun cohort, we report an increase 
in the proportion of circulating IL-17A+IFNγ+ Th cells 
between T2 and T1 in responding patients but not in non-
responding ones. In our prospective NAC-treated cohort, 
we also detect significantly more MDR1+ TA-Th cells but 
also Th1.17 and Th17 cells in the TME from responding 
patients than from non-responding ones. It will be inter-
esting to determine the contribution of Th1.17 and Th17 
cells in the efficacy of NAC treatment as previously shown 
in gastric cancer.43

Whereas gene-expression module reflecting Th1 
cells and IFN-γ detection in BC tumors has been largely 
associated with good prognosis,44 the role of Th17 and 
Th1.17 cells remains controversial. Here, we propose a 
critical function of these subsets in antitumoral immu-
nity in the context of NAC treatment in BC. Our anal-
yses offer a mechanistic understanding of the impact of 
NAC treatment on T-cell subsets, and open new avenues 
for the immunotherapeutic potential of T helper subsets. 
However, it remains important to determine the role of 
MDR1+ TA-Th cells in the response to NAC. Based on our 
work and the literature, we hypothesize that these CD4+ 
Th cells may have antitumor functions linked to their 
cytokine pattern and cytotoxic potential. Indeed, the 
scRNAseq data (our data in blood and PKU reanalyzes in 
tumor) show that MDR1 is associated with Th1.17 and Th 
cells with features of cytotoxic cells expressing GZMK that 
could refer either to less differentiated cells as defined for 
CD8+ T cells45 or to a population with a cytotoxic potential 
in a caspase-independent manner through either single-
stranded DNA damage, mitochondrial dysfunction, 
reactive oxygen species or cell membrane damage (for 
review46). However, we did not detect signs of activation/
proliferation on the tumor-associated MDR1+ CD4+ Th 
cells. One caveat of this analysis is that it was performed 
only on non-responding patients due to the lack of acces-
sible fresh tumor material in NAC-responding patients. 
This is in line with data from Oh et al47 in bladder tumors 
who demonstrated that CD4 cytotoxic clusters did not 
express ICPs such as TIGIT or TNFRSF4/9/18 but were 
endowed with polyfunctional features (co-expression of 
IFN-γ and TNF-α). However, the expression of IL-17A was 
not investigated in this study.

The absence of activation of MDR1+ CD4+ Th cells in 
non-responding patients might be linked to their upreg-
ulated expression of CD73 that could participate in their 
own regulation through adenosine production in a TME 
enriched in CD39+ Treg cells.5 Indeed, Treg cells propor-
tion is decreased in responding patients, and PDE4D 
gene selectively enriched in MDR1+ Th cells may also 
contribute, through cyclic AMP degradation, to resist to 
A2AR signaling, both events favoring MDR1+/Th1.17+ 
cell activation in responding patients. To address prop-
erly this question, a dedicated clinical trial with a manda-
tory biopsy before and after two cycles of NAC would have 
to be set-up.

Our observation could provide a strategy to identify, 
early in the treatment through liquid biopsies, patients 
who will not respond to anthracyclines/CTX chemo-
therapy and for whom a change in the chemotherapy 
regimen may be beneficial to increase antitumor response.

In metastatic BC, current therapeutic strategies aim 
to combine ICP blockers with chemotherapy to increase 
their efficacy.48 Of interest, the TONIC trial49 evaluating, 
on metastatic TNBC, the impact of an induction treatment 
with different chemotherapy regimen before anti-PD-1 
reported a better objective response rate in doxorubicin-
treated (35%) patients than in CTX-treated (8%) ones. 
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This could result from ICD induced by anthracyclines20 
but also, as they express PD-1, from MDR1+ T cells (CD4+ 
and CD8+ T cells) enrichment and Treg cell depletion 
by doxorubicin but not CTX. Moreover, results from the 
KEYNOTE-522 phase 3 trial highlighted that addition of 
anti-PD-1 to NAC with paclitaxel/carboplatin regimen 
in patients with early TNBC significantly increased pCR 
rate50 suggesting that preservation, by chemotherapy, of 
MDR1-expressing cells (Th1.17 and Th17 but also CD8+ 
Teff) could participate to the efficacy of anti-PD-1. Based 
on these results, chemotherapies substrate of MDR1 
should be preferred to develop combination with immu-
notherapies in other tumor indications. In this context, 
etoposide, another MDR1 substrate, combined with anti-
PD-1 ligand (PD-L1, atezolizumab) obtained Food and 
Drug Administration approval in 2019 for the treatment 
of advanced lung carcinoma based on IMpower133 trial 
results.51 It could be of interest to investigate in such 
patients a link between blood Th1.17 cells enrichment 
and response to treatment to extend our observations.
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