








5Wu B, et al. J Immunother Cancer 2023;11:e005852. doi:10.1136/jitc-2022-005852

Open access

TCF1, encoded by TCF7, plays a key role in maintaining 
memory stem cell pool of antitumor CD8+ T cells and 
dictating response to various immunotherapies including 
immune checkpoint inhibitors.14 From our TILs analysis 
(figure 3J,K) we observed significantly lower expression 
of TCF1 in CD8+ T cells from TBKO versus WT mice, 
suggesting a potential role of BRCA1 in promoting TCF1-
related transcriptional program. In keeping with this 
model, a recent study demonstrated that BRCA1 mutation 
carriers had significant lower frequency of p63+TCF7+ 
myoepithelial cells.18 Future work is needed to determine 
how BRCA1 affects TCF1 expression and/or activity.19

A previous study reported a higher percentage of 
stromal TILs in BRCA1-mutated versus WT primary triple 
negative breast cancer samples.20 Due to deficiency in 

DNA repair and elevated genomic instability, BRCA1-
mutated tumor cells are expected to have increased 
tumor mutation load and a greater number of neoan-
tigens, which can in turn attract more TILs. Therefore, 
in BRCA1 mutation carrying patients with breast cancer, 
the effect of tumor-intrinsic BRCA1 deficiency on TIL 
abundance could offset compromised antitumor immu-
nity due to T cell-intrinsic loss of BRCA1. In our preclin-
ical tumor models, we bypassed the influence of tumor 
BRCA1 deficiency by using the same tumor cell line in 
both WT and TBKO hosts, which enabled us to assess the 
specific consequences of BRCA1 deficiency in antitumor 
T cells.

Prophylactic bilateral mastectomy and prophylactic 
bilateral salpingo-oophorectomy are currently the 

Figure 3  CD8-intrinsic BRCA1 is important for antitumor immunity. (A) scheme of CD8+ adoptive transfer to Rag1-/- mice 
followed by E0771 tumor challenge. (B) E0771 tumor growth curves in Rag1-/- mice receiving PBS, WT, or TBKO CD8+ cells. 
(C–K) TIL analysis by flow cytometry for total CD8+ T cell percentage of CD45+ (C), effector memory CD44+CD62L− percentage 
of CD8+ cells (D), proliferative Ki67+ percentage of CD8+ cells (E), IL2+ percentage of CD8+ cells (F), cytotoxic Gzmb+ percentage 
of CD8+ cells (G), cytotoxic PRF1+ percentage of CD8+ cells (H), polyfunctional IFNγ+TNFα+ percentage of CD8+ cells (I), TCF1hi 
percentage of CD8+ cells (J), and TCF1 MFI in CD8+ cells (K) in Rag1-/- mice with adoptively transferred WT or TBKO CD8+ T 
cells. TIL, tumor-infiltrating lymphocyte; WT, wild type; TBKO, dLck-Cre, Brca1f/f; PBS, Phosphate-Buffered Saline.
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primary risk-reducing measures for germline BRCA1 
mutation carriers.21 Despite their proven clinical efficacy, 
these prophylactic surgeries are associated with various 
side effects including pain and postoperative complica-
tions, undesired cosmetic outcomes as well as psychosocial 
morbidity,22 which has prompted exploration of nonsur-
gical risk-reducing tools for BRCA1 mutation carriers.23 
Furthermore, the current prophylactic considerations are 
aimed at the cell of origin for BRCA1-associated tumors 
rather than non-breast epithelial cells. On further valida-
tion of the concept of T cell-specific BRCA1 function, it 
may be clinically relevant to search for therapeutic agents 
that can boost functions of antitumor immunity of CD8+ 
T cells with BRCA1 deficiency, which could reduce life-
time cancer risk for BRCA1 mutation-carrying women.

METHODS
Donor age distributions were shown in figure 4A, and the 
mutation information for individual donors were detailed 
in online supplemental table 1.

Mice and in vivo tumor study
Brca1f/f (backcrossed to pure C57BL/6J background for 
10 generations) and distal Lck-cre (dLck-cre) mice were 
established as previously described.12 24 Brca1f/f mice were 
used as the WT control in most of our experiments. Rag1-

/- (stock no. 002216) mice were purchased from The 
Jackson Laboratory. Mice older than 8 weeks were consid-
ered adults and used for all the experiments.

For tumor challenge, syngeneic mammary tumor 
E0771 cells (1×106 cells) (CH3 Biosystems, 940001) or 
B16 (1×105 cells) (a generous gift from Tyler Curiel25) 
were injected into the fourth mammary fat pad or back 
flank of C57BL/6 mice, respectively. For adoptive CD8+ 
T cell transfer experiments, CD8+ cells were isolated from 
mouse spleen using an EasySep Mouse CD8+ T Cell Isola-
tion Kit (STEMCELL Technologies, 19853). WT or TBKO 
(2.5×106) CD8+ were transferred by tail vein injection into 
Rag1-/- recipients. E0771 (1×106 cells) mammary tumor 
cells were then inoculated into the fourth mammary fat 
pad 1 day after CD8+ adoptive transfer.

Flow cytometry for mouse samples
Cells were stained with Viability Ghost Dye 510 (Tonbo 
Biosciences, 13-0870) and blocked by anti-CD16/32 
(Tonbo Bioscience, 70-0161). Cells were further stained 
with anti-CD45 (Invitrogen, 11-0451-82), anti-CD3 (Tonbo 
Biosciences, 65-0031 U100), anti-CD8 (BD Pharmingen, 
557654), anti-CD44 (BioLegend, 103041), anti-CD62L 
(BioLegend, 104424), anti-TIM3 (Biolegend, 119704), 
and anti-LAG3 (Invitrogen, 25223182). For nuclear 
transcription factor staining, cells were permeabilized 
using a FoxP3/transcription factor staining kit (eBio-
science, 00-5523-00) and stained with anti-Ki67 (Invit-
rogen, 48-5698-82) and anti-TCF1 (Biolegend, 655203). 
For cytokine staining, cells were stimulated by anti-CD3/
CD28 (ThermoFisher, 11 452D) and then treated with BD 
GolgiPlug (BD Biosciences, 550583). Cells were permea-
bilized using a BD Cytofix/Cytoperm kit (BD Biosciences, 
554714) and stained with anti-IFNγ (BioLegend, 505826), 
anti-TNFα (BioLegend, 506314), anti-IL2 (Invitrogen, 
45-7021-82), anti-Granzyme B (Invitrogen, 12-8898-82), 
anti-Perforin (Invitrogen, 11-9392-82). Apoptosis was 
assessed as previously mentioned.19 Data were analyzed 
using BD FACSDiva and FlowJo software.

In vitro T cell activation and immunoblotting
Naive CD8+ cells were isolated from mouse spleen using 
an EasySep Mouse CD8+ T Cell Isolation Kit (STEMCELL 
Technologies, 19858) and then activated by anti-CD3/
CD28 (Thermo Fisher, 11 452D). After 48 hours of acti-
vation, cells were lysed for immunoblotting. Anti-BRCA1 
antibody (Santa Cruz, sc-135732) and corresponding 
secondary antibody were used.

Flow cytometry analysis for human blood samples
Whole blood samples of BRCA1 non-carriers and muta-
tion carriers were collected in lithium-heparin-coated 
tubes (BD, 367880). Samples were incubated with anti-
human Fc receptor binding inhibitor antibody (Invit-
rogen, 14-9161-73) for 15 min in 4°C. Red blood cells were 
lysed with RBC lysis buffer (Invitrogen, 00-4300-54). Cells 
were then incubated with Viability Ghost Dye 510 (Tonbo 
Biosciences, 13-0870) and blocking buffer (Invitrogen, 
14-9161-73), followed by anti-CD3 (Invitrogen, 63-0037-
42), anti-CD4 (Biolegend, 344710), anti-CD8 (Biolegend, 
344710) staining. Flow cytometry data were acquired by 

Figure 4  Human BRCA1 mutation carriers are associated 
with lower abundance of CD8+ T cells. (A) Donor ages of 
non-carriers and carriers of BRCA1 mutation. (B) CD8+ 
percentages of total live cells in human blood. (C) Proposed 
dual impact of BRCA1 heterozygosity on breast epithelium 
and CD8+ T cells.
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a BD FACSCelesta and analyzed using BD FACSDiva and 
FlowJo software.

Statistics
Mean differences between two groups were tested using 
Student’s t-test. Mean differences between three or more 
groups were tested using one-way analysis of variance 
(ANOVA). Tumor curves were compared using two-way 
ANOVA, followed by multiple comparisons. Statistics were 
performed using GraphPad Prism software. A p<0.05 was 
considered significant.
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