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Figure 8  Anti-HVEM18-10 therapy builds a memory T cell response associated with CD4+ and CD8+ tumor antigen responsive 
T cells. (A) Tumor growth profile overtime following, isotype control (black), anti-CTLA-4 (blue), or anti-HVEM18-10 (red) 
treatment. (B) Lymph nodes (LN) were dissociated and cell stained for flow cytometry. UMAPs represent the phenotypic 
distribution of T cells within LN in isotype control mice (n=6), anti-HVEM18-10 (n=6), or anti-CTLA-4 (n=3) treated neo-
challenged mice or anti-HVEM18-10 (n=3) or anti-CTLA-4 treated rechallenged mice (n=3). (C) Study of effector memory 
(EM), central memory (CM), and naïve conventional (conv.) CD4+ and CD8+ T cells among neo-challenged and rechallenged 
conditions (D) Study of immune checkpoint expression in conv. CD4+ T cells among neo-challenged and rechallenged 
conditions. (E) Study of immune checkpoint expression in CD8+ T cells among neo-challenged and rechallenged conditions. 
(F) Regulatory T (Treg) cells frequency among neo-challenged and rechallenged conditions. (G) Study of immune checkpoint 
expression in Tregs among neo-challenged and rechallenged conditions. (H) Study of CD49d+CD11a+ tumor-specific CD4+ and 
CD8+ T cells in neo-challenged and rechallenged conditions. *P<0.05; **p<0.01; ***p<0.001.
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treatments. Draining LN were resected and dissociated 
then T cell phenotypes were assessed by flow cytometry. 
T cell mapping was drastically modified after rechallenge 
compared with neo-challenge as shown by density UMAPs 
(figure  8B). Then, memory T cell subsets were gated 
(using CD44 and CD62L expression) and neo-challenged 
and rechallenged mice treated with anti-HVEM or anti-
CTLA-4 were compared. We found that rechallenged 
treated mice either for anti-HVEM18-10 or anti-CTLA-4 
were enriched in EM CD4+ T cells (CD44+CD62-L-) 
compared with their neo-challenged counterpart and 
isotype control (figure 8C, left). This increase was signifi-
cantly superior in rechallenged CTLA-4-treated compared 
with rechallenged HVEM-treated mice (figure 8C, left). 
Noteworthy, naïve CD4+ T cells decreased after rechal-
lenge. Concerning CD8+ T cells, we found that rechal-
lenged mice with anti-HVEM18-10 or anti-CTLA-4 showed 
more CM CD8+ T cells (CD44+CD62-L+) compared with 
their neo-challenged counterpart and isotype control 
(figure  8C, right and online supplemental figure 5D). 
This increase tended to be superior in rechallenged 
HVEM-treated compared with rechallenged CTLA-4-
treated mice. Again, naïve CD8+ T cells decreased as well 
on treatments. Taken together, these results show an 
enrichment in memory CD8+ and CD4+ T cells in rechal-
lenged conditions.

Next, we investigated activation marker expression on 
CD4+ and CD8+ T cells from LN (figure 8D,E and online 
supplemental figure 5E). In CD4+ T cells no modifica-
tion in the expression of CD40L, IL-2Rβ, or 4-1BB was 
observed. However, the expression of inducible costimu-
lator (ICOS) in rechallenged mice after anti-HVEM18-10 
or anti-CTLA-4 treatment increased compared with 
controls. Similarly, CD69+CD4+ T cells were more abun-
dant in rechallenged mice compared with controls. 
Noteworthy, CD69 overexpression was greater in anti-
CTLA4 rechallenged mice compared with anti-HVEM 
rechallenged mice (figure 8D). In CD8+ T cells, an over-
expression of IL2-Rβ in rechallenged mice compared 
with controls was observed. Here, IL2-Rβ expression was 
greater in anti-HVEM18-10 rechallenged mice compared 
with anti-CTLA-4 rechallenged mice (figure  8E). This 
suggests a better response to IL-2 or IL-15 and conse-
quently more CD8+ T cell activation. Noteworthy, we did 
not notice any difference in the expression of CD69 on 
CD8+ T cells (figure 8E). Next, the Treg population within 
LNs after rechallenge was investigated. Treg frequency 
increased after rechallenge in both anti-HVEM18-10 
and anti-CTLA-4 mice compared with anti-HVEM18-10 
neo-challenged group (figure  8F). Last, a decrease in 
the expression of CD69 in Treg was observed, suggesting 
less activation or recruitment of peripheral blood Treg 
(figure  8G). Taken together, these results show that 
rechallenged mice rejected secondary tumor inocula-
tion thanks to a strong T cell memory response linked to 
an increased expression of IL-2Rβ and a recruitment of 
tumor responsive CD8+ and CD4+ T cells.

Recently, the CD11a+CD49d+ CD4+ and CD8+ T cells 
were reported as tumor antigen responsive T cells, which 
participate to antitumor response.21 Therefore, we gated 
CD11a+CD49d+ CD4+ and CD8+ T cells (figure  8D and 
online supplemental figure 5F) and showed that tumor 
antigen responsive CD4+ T cells increased on rechallenge 
with anti-HVEM18-10 and anti-CTLA-4 mice (figure 8H) 
compared with controls. Interestingly, tumor antigen 
responsive CD8+ T cells significantly increased after 
rechallenge with anti-HVEM18-10 only (figure  8H). 
Taken together, our results show that the antitumoral 
memory response that allowed tumor rejection relies on 
enrichment in CD4+ and CD8+ memory subpopulations, 
increase of IL-2Rβ/activation markers, and more impor-
tantly on tumor antigen-specific T cell subsets, which 
most likely allow secondary tumor rejection.

DISCUSSION
HVEM is a molecular switch as its effect depends on 
the ligand involved that is largely expressed in lung and 
colorectal tumors. Here, we showed that anti-HVEM18-10 
antagonist mAb potentiates in vitro T cell proliferation 
and activation by blocking preferentially the interaction 
with the inhibitory ligands of HVEM. Then, we developed 
an innovative mouse model expressing both human BTLA 
and human HVEM. Anti-HVEM18-10 injection in mice 
induced the development of a marked T cell-memory 
phenotype and tumor antigen-specific (CD49d+CD11a+) 
T cells contributing in HVEM+ tumor reduction or rejec-
tion, especially after rechallenge. Therefore, HVEM 
targeting is a great addition to the currently available 
arsenal of IT.

To assess the clinical relevance of HVEM targeting in 
lung and colorectal tumors, we screened HVEM expres-
sion public transcriptomic databases. We found that 
HVEM was largely expressed in these cancers and did not 
correlate with PD-L1 expression. Surprisingly, the litera-
ture reporting HVEM expression in lung and colorectal 
cancers remains sparse.8 14 22 A more detailed multipara-
metric study, like was shown for pancreatic cancer23 would 
participate to the improvement of tumor type stratifica-
tion and define who could benefit from HVEM18-10 mAb 
treatment.

In our in vitro preclinical settings, we showed that 
the anti-HVEM18-10 mAb increased primary human 
αβ-T cells activity alone (CIS-activity) or in presence of 
HVEM-expressing lung or colorectal cancer cells in vitro 
(TRANS-activity). Thus, we observed an immune reac-
tivation similarly to that triggered by anti-PD-1 or anti-
CTLA-4 treatment, favoring the idea that HVEM18-10 
mAb avoids HVEM interaction with its inhibitory 
ligands. Indeed, our model do not allow to appreciate 
fully the effect of the binding of HVEM18-10 mAb on 
huCD160 and huLIGHT interaction with HVEM. The 
same observation was made with anti-HVEM18-10, which 
allowed γδ-T cells activation, especially against HVEM+ 
lymphoma cells.15 In the light of these observations, 
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the use of HVEM18-10 mAb to potentiate anti-tumor T 
cell responses in hematological cancer as well as in solid 
cancers is of great interest.

Interestingly, anti-HVEM18-10 synergized with anti-
PD-L1 effects and maximized T cells responses when 
tumor cells expressed both targets. Therefore, anti-
HVEM18-10 could be used in combination with other ICI 
therapies and reinforce the still growing arsenal of ICI 
combinations in ongoing trials anti-CTLA4/anti-PD-L124 
anti-TIGIT/anti-PD-L1,25 and anti-BTN3A1/anti-PD-L1.26 
Nevertheless, we showed that anti-HVEM18-10 alone 
is still sufficient to trigger efficient T cells responses in 
PD-L1− conditions. Thus, anti-HVEM18-10 may increase 
the target patient population independently of their 
PD-L1 status and PD-L1− cancers such as colorectal cancer 
may benefit from this new treatment.

Recently, anti-HVEM IT was investigated in a prostate 
cancer mouse model,27 where Aubert et al showed that 
anti-HVEM18-10 reduced the growth of a HVEM+ tumors 
in ​NOD.​SCID.​gc-​null mice reconstituted with human T 
cells. In our study, we generated innovative immunocom-
petent mouse models expressing extracellular domains 
of huBTLA or both huBTLA and huHVEM. This, 
allowed preclinical experiments settings using human 
anti-HVEM18-10 in immunocompetent mice bypassing 
the use of human T cell reconstitution in nude mice. 
TIL phenotype showed a decrease in Treg infiltration, 
CD8+ T cells exhaustion, and an increase of EM CD4+ 
T cells, expanding results from Aubert et al in prostate 
tumors27 to colon cancer. In addition, anti-CTLA4 treat-
ment showed similar phenotypic modifications, which 
was already reported in the literature.19 20 Our new mouse 
models allowed the study of therapeutic mAb directly in 
an immunocompetent and dynamic environment. To 
date, only one recent study described a KI mouse model 
expressing human PD-1 and CTLA-4 molecules.28 The 
number of these syngeneic mouse models will increase in 
the future being closer to the clinic.

In our settings, around 20% of the mice completely 
rejected the tumor enabling the study of memory 
response induced by the rechallenge. Within tumor 
draining LN, we found a specific T cell memory compo-
sition, marked by an increase in IL-2Rβ+ CM CD8+ T cells 
and EM CD4+ T cells in comparison to neo-challenged 
mice. More importantly, draining LN sheltered a popu-
lation of CD49d+CD11a+ CD8+ and CD4+ lymphocytes, 
which were recently described as tumor antigen-specific 
T cells.29 In a previous collaborative study, we showed 
that the addition of anti-HVEM18-10 was sufficient to 
decrease prostate cancer tumor growth and this effect 
was reverted by CD8 depletion.27 Thus, the antitumoral 
effect triggered by anti-HVEM18-10 is mainly due to CD8+ 
T cells. Therefore, anti-HVEM18-10 treatment leads to a 
systemic, tumor antigen-specific, T cell memory response 
allowing the mice to control distal secondary tumor 
implantation, similar to CTLA4 or anti-PD-1 treatment in 
other studies.30–33

CONCLUSION
HVEM appears to be a very promising IT target for onco-
logical and hematological malignancies. Anti-HVEM18-10 
mAb treatment demonstrated that antitumor immune 
response was strengthened, delays tumor growth or erad-
icate tumors, and induces a memory immune response in 
a cutting-edge preclinical mouse model. Altogether, these 
results highlight the interest of anti-HVEM IT alone or 
in combination with another IT to further enhance anti-
tumor immunity.
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