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ABSTRACT
Background Immune checkpoint inhibitors (ICIs)- based 
therapy, is regarded as one of the major breakthroughs in 
cancer treatment. However, it is challenging to accurately 
identify patients who may benefit from ICIs. Current biomarkers 
for predicting the efficacy of ICIs require pathological slides, 
and their accuracy is limited. Here we aim to develop a 
radiomics model that could accurately predict response of ICIs 
for patients with advanced breast cancer (ABC).
Methods Pretreatment contrast- enhanced CT (CECT) image 
and clinicopathological features of 240 patients with ABC 
who underwent ICIs- based treatment in three academic 
hospitals from February 2018 to January 2022 were assigned 
into a training cohort and an independent validation cohort. 
For radiomic features extraction, CECT images of patients 
1 month prior to ICIs- based therapies were first delineated with 
regions of interest. Data dimension reduction, feature selection 
and radiomics model construction were carried out with 
multilayer perceptron. Combined the radiomics signatures with 
independent clinicopathological characteristics, the model was 
integrated by multivariable logistic regression analysis.
Results Among the 240 patients, 171 from Sun Yat- sen 
Memorial Hospital and Sun Yat- sen University Cancer Center 
were evaluated as a training cohort, while other 69 from 
Sun Yat- sen University Cancer Center and the First Affiliated 
Hospital of Sun Yat- sen University were the validation cohort. 
The area under the curve (AUC) of radiomics model was 0.994 
(95% CI: 0.988 to 1.000) in the training and 0.920 (95% CI: 
0.824 to 1.000) in the validation set, respectively, which were 
significantly better than the performance of clinical model 
(0.672 for training and 0.634 for validation set). The integrated 
clinical- radiomics model showed increased but not statistical 
different predictive ability in both the training (AUC=0.997, 
95% CI: 0.993 to 1.000) and validation set (AUC=0.961, 
95% CI: 0.885 to 1.000) compared with the radiomics model. 
Furthermore, the radiomics model could divide patients 
under ICIs- therapies into high- risk and low- risk group with 
significantly different progression- free survival both in training 
(HR=2.705, 95% CI: 1.888 to 3.876, p<0.001) and validation 
set (HR=2.625, 95% CI: 1.506 to 4.574, p=0.001), respectively. 
Subgroup analyses showed that the radiomics model was 
not influenced by programmed death- ligand 1 status, tumor 
metastatic burden or molecular subtype.

Conclusions This radiomics model provided an innovative 
and accurate way that could stratify patients with ABC who 
may benefit more from ICIs- based therapies.

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Current biomarkers such as programmed death- ligand 
1 (PD- L1), tumor mutation burden, stromal tumor in-
filtrating lymphocytes, and microsatellite instability/
defective mismatch repair for predicting the efficacy of 
immunotherapy require pathological slides, and their 
accuracy is limited. Radiomics have shown promising 
results to predict response to immunotherapy in some 
solid tumors. However, no radiomic biomarkers have 
been reported in predicting the response of immune 
checkpoint inhibitors (ICIs)- based therapies in breast 
cancer so far.

WHAT THIS STUDY ADDS
 ⇒ This multicentered study developed the first radiomics 
model for immunotherapy response prediction specifi-
cally for patients with advanced breast cancer. And this 
non- invasive prediction model performed effectively 
both in the training and validation cohort. This study 
presents an efficient, non- invasive, and reliable way to 
predict patients with advanced breast cancer respons-
es to ICIs- based therapies via machine learning- based 
radiomics model.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ To our knowledge, this is the first study to apply radio-
mics to infer the clinical benefit of immunotherapy in 
patients with advanced breast cancer.

 ⇒ It confirms the potential of radiomics to identify patients 
with advanced breast cancer most likely to respond to 
ICIs- based therapies.

 ⇒ The accuracy of this radiomics model was not influ-
enced by PD- L1 status, tumor metastatic burden, mo-
lecular subtype or combined treatment regimens, and 
could be widely used to aid breast oncologists in making 
decisions of ICIs- based therapies for patients with ad-
vanced breast cancer.
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INTRODUCTION
Among malignancies, breast cancer has been a signif-
icant cause of tumor- related deaths around the world.1 
Although the recurrence rate of early- stage breast cancer 
has gradually decreased with improved treatment, nearly 
30% of patients with primary breast cancer still progress to 
incurable metastatic breast cancer in 10 years, according 
to our own database.2

Immune checkpoint inhibitors (ICIs) (ie, programmed 
death- ligand 1 (PD- L1) or cytotoxic T- lymphocyte antigen 
4) bring new promise in cancer treatment by their ability 
to improve overall survival among patients, especially 
those with metastatic or locally advanced breast cancer 
(ABC).3–6 Given the near doubling survival benefit of ICIs 
for some patients with metastatic triple- negative breast 
cancer (TNBC), ICIs is being widely explored in several 
clinical studies for different stages of breast cancer, and 
even is recommended in neoadjuvant setting of high- risk 
TNBC in order to improve the cure rate. However, it is 
worth noting that ICIs therapy is only beneficial to a small 
proportion of patients with breast cancer (20% to 40%), 
and also has non- negligible toxicity and even a 0.2% to 
0.3% risk of treatment- related death. Therefore, it is of 
great clinical value to precisely target the beneficiary 
population of ICIs.

Although previous studies suggest that some biomarkers 
such as PD- L1,4 tumor mutation burden (TMB),6 stromal 
tumor infiltrating lymphocytes (TILs),7 and microsatellite 
instability/defective mismatch repair (MSI/dMMR) can 
predict the population of immunotherapy benefit, inva-
sive biopsies were needed to acquire these biomarkers 
and the accuracy are not ideal. Hence, it is important to 
explore innovative methods for more accurate and non- 
invasive prediction of their efficacy.

One of the non- invasive prediction modalities is to 
integrate the use of radiomics analysis. Since biomedical 
images could reflect the cellular and molecular prop-
erties of tissues, the radiomics could be used to analyze 
and translate medical images into quantitative data.8 
The quantitative imaging features could be extracted 
by machine learning in a high- throughput manner and 
further adopted to evaluate tumor microenvironment 
(TME) and heterogeneity.9 Radiomics- based biomarkers 
have made achievements in auxiliary diagnosis and prog-
nosis assessment recently, encouraging studies have been 
reported on the potential utility of radiomics for predicting 
response to ICIs in lung cancer and melanoma.10–12 The 
non- invasive property and reliability of radiomics provide 
us with an innovative method to predict immunotherapy 
response. However, no radiomic biomarkers have been 
reported in predicting the response of ICIs- based thera-
pies in breast cancer so far.

In view of this, this multicentered study was conducted 
to develop a machine learning based radiomics model 
that could accurately predict immunotherapy benefit and 
optimize treatment decisions for patients with ABC.

METHOD
Study design
In this study, a total of 240 patients with ABC who 
received ICIs- based therapy in three academic medical 
centers, as Sun Yat- sen Memorial Hospital (SYSMH), Sun 
Yat- sen University Cancer Center (SYSUCC), and the First 
Affiliated Hospital of Sun Yat- sen University (FAHSYSU), 
from February 2018 to January 2022 were retrospec-
tively analyzed. To improve data quality and model 
robustness, 61 of these patients were recruited from 
two phase II prospective clinical studies (NCT03394287 
and NCT04303741),13 14 which were designed to explore 
the efficacy and safety of anti- programmed cell death 
protein- 1 (PD- 1) monoclonal camrelizumab plus anti- 
angiogenic therapy apatinib with or without chemo-
therapy in advanced TNBC. One study (NCT03394287) 
investigated the efficacy and safety of chemotherapy- free 
regimens ‘camrelizumab in combination with apatinib’ in 
the front- line (1–3 lines) treatment of advanced TNBC, 
showing an objective response rate (ORR) of 43.3%. The 
other study (NCT04303741) investigated the efficacy and 
safety of eribulin in combination with camrelizumab and 
apatinib in the second or later line treatment of advanced 
TNBC, which showed that the combination regimen still 
achieved an ORR of 37.0% and a median progression- 
free survival (PFS) of 8.1 m in these heavily pretreated 
patients with TNBC. The other 179 patients were enrolled 
from a multicentered retrospective database of patients 
with ABC receiving anti- PD- 1 antibodies in combination 
with chemotherapy±anti- human epidermal growth factor 
receptor 2 (HER2) treatment±antiangiogenic therapy. 
These 240 patients were further divided into a training 
cohort and an independent validation cohort according 
to need. In order to better reflect the balance of multi-
centered data and the principle of random data assign-
ment, we randomly divided the patients with breast 
cancer from SYSUCC, the medical center with the largest 
sample size, into two groups. Then, 50% of the patients 
from SYSUCC together with the patients from SYSMH, 
totaling 171, were established as the training cohort, and 
the other 50% of the patients of SYSMH together with the 
patients from FAHSYSU, totaling 69, were established as 
the validation cohort (table 1, figure 1).

The inclusion criteria were (1) patients with patholog-
ically proven ABC, (2) patients who received ICIs- based 
therapies and (3) patients who underwent CT scan within 
1 month before ICIs- based treatment. Exclusion criteria 
were (1) patient lacks measurable lesions according to 
RECIST V.1.1 criteria; (2) samples of poor- quality or 
inadequate, and (3) incomplete data on baseline clini-
copathological features or follow- up data (online supple-
mental appendix S1). This study’s primary outcome was 
response to immunological combination treatment as 
measured by RECIST V.1.1 criteria,15 with definition of 
complete response (CR), partial response (PR), stable 
disease (SD), and progressive disease (PD). In this study, 
patients with PR and CR were categorized as ‘responsive’, 
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Table 1 Demographics and clinicopathologic characteristics of the training cohort and the testing cohort

Characteristics

Entire 
cohort
(N=240)

Training cohort (N=171)

P value

Testing cohort (N=69)

P value
Non- response
(N=110)

Response
(N=61)

Non- response
(N=45)

Response
(N=24)

Age       0.294     0.139

  Mean±SD 48.36±10.38 47.56±10.82 49.32±9.82   47.49±9.79 51.29±10.53   

Age group       0.398     0.713

  <40 53 (22.1） 27 (24.5） 13 (21.3）   9 (20.0） 4 (16.7）   

  40–50 77 (32.1） 37 (33.6） 16 (26.2）   17 (37.8） 7 (29.2）   

  ≥50 110 (45.8） 46 (41.8） 32 (52.5）   19 (42.2） 13 (54.2）   

BMI (kg/m²)       0.946     0.818

  Mean±SD 22.91±3.23 23.01±3.36 22.98±3.36   22.76±3.29 22.59±2.27   

BMI group       0.788     0.569

  <18.5 22 (9.2） 10 (9.1） 7 (11.5）   4 (8.9） 1 (4.2）   

  18.5–24 133 (55.4） 59 (53.6） 34 (55.7）   24 (53.3） 16 (66.7）   

  >24 85 (35.4） 41 (37.3） 20 (32.8）   17 (37.8） 7 (29.2）   

ECOG performance status       0.185     1.000

  0–1 218 (90.8） 98 (89.1） 58 (95.1）   40 (88.9） 22 (91.7）   

  ≥2 22 (9.2） 12 (10.9） 3 (4.9）   5 (11.1） 2 (8.3）   

Menopausal status       0.470     0.285

  Premenopause 82 (34.2） 32 (29.1） 21 (34.4）   21 (46.7） 8 (33.3）   

  Postmenopause 158 (65.8） 78 (70.9） 40 (65.6）   24 (53.3） 16 (66.7）   

Prior operation       0.051     0.032

  Surgery 183 (76.2） 93 (84.5） 44 (72.1）   34 (75.6） 12 (50.0）   

  Without surgery 57 (23.8） 17 (15.5） 17 (27.9）   11 (24.4） 12 (50.00）   

Number of lines of prior therapies in the 
advanced setting

      0.020     0.032

  1 82 (34.2） 31 (28.2） 28 (45.9）   11 (24.4） 12 (50.0）   

  ≥2 158 (65.8） 79 (71.8） 33 (54.1）   34 (75.6） 12 (50.0）   

ER status       0.155     0.781

  Negative 202 (84.2） 88 (80.0） 54 (88.5）   40 (88.9） 20 (83.3）   

  Positive 38 (15.8） 22 (20.0） 7 (11.5）   5 (11.1） 4 (16.7）   

PR status       0.135     1.000

  Negative 215 (89.6） 103 (93.6） 53 (86.9）   38 (84.4） 21 (87.5）   

  Positive 25 (10.4） 7 (6.4） 8 (13.1）   7 (15.6） 3 (12.5）   

HER2 status       0.468     0.652

  Negative 225 (93.8） 102 (92.7） 59 (96.7）   41 (91.1） 23 (95.8）   

  Positive 15 (6.2） 8 (7.3） 2 (3.3）   4 (8.9） 1 (4.2）   

Molecular subtype       0.665     0.915

  HR+/HER2− 43 (17.9） 18 (16.4） 10 (16.4）   10 (22.2） 5 (20.8）   

  HER2+ 15 (6.3） 8 (7.3） 2 (3.3）   4 (8.9） 1 (4.2）   

  TNBC 182 (75.8） 84 (76.4） 49 (80.3）   31 (68.9） 18 (75.0）   

Molecular subtype group       0.550     0.594

  Non- TNBC 58 (24.2） 26 (23.6） 12 (19.7）   14 (31.1） 6 (25.0）   

  TNBC 182 (75.8） 84 (76.4） 49 (80.3）   31 (68.9） 18 (75.0）   

Ki67       0.708     1.000

  ≤20 18 (7.5） 6 (5.5） 5 (8.2）   5 (11.1） 2 (8.3）   

  >20 222 (92.5） 104 (94.5） 56 (91.8）   40 (88.9） 22 (91.7）   

Continued
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whereas patients with SD and PD were categorized as 
‘non- responsive’.

Clinicopathological data
Patients’ clinicopathological information was acquired 
from the hospital information system at each study center. 
Clinical information includes patients’ age, body mass 
index (BMI), menopausal status, prior treatment history, 
combination regimen with ICIs, lines of previous therapy 
in the context of metastatic disease, hematologic indica-
tors, blood biochemical indices, and tumor metastatic 
burden. Pathological information included tumor patho-
logical type, (estrogen receptor progesterone receptor 
and HER2 status), Ki67 proliferation index, and PD- L1 
expression status.

In this work, PD- L1 expression was assessed using the 
Combined Positive Score (CPS), which has been used 
in previous study.3 According to this protocol, CPS was 
defined as the number of PD- L1+ cells regardless of cell 
types (including tumor cells, lymphocytes, and macro-
phages) divided by the total number of tumor cells, then 
further multiplied by 100. PD- L1 positivity was defined as 
≥10 of CPS. Quantitative and qualitative PD- L1 staining 
was conducted using the DAKO Link 48 platform and the 

Food and Drug Administration- approved DAKO 22C3 
antibody.

CT imaging data acquisition
Patients underwent contrast- enhanced CT (CECT) exam-
inations within 1 month prior to immunotherapy. The CT 
images were exported in DICOM format through image 
archiving and communication system (PACS) retrieval in 
the radiology department of each center. Patients were 
scanned with multi- slice spiral CT (GE Medical Systems, 
Siemens, Philips, Toshiba, United Imaging Healthcare, 
etc) of the neck, chest and abdomen. The majority of 
CECT scans tube voltage were 120 KeV, with automatic 
tube current modulation technique. Reconstruction 
using standard convolution kernel with 1.25 mm layer 
thickness (median 1.25 mm; range 1.0–2.0 mm). Each CT 
image is reconstructed in a 512×512 pixels image matrix. 
To eliminate image differences between images acquired 
by different CT instruments, all CT images were first resa-
mpled to the same image spacing of 1 mm × 1 mm × 1 mm 
using cubic spline interpolation to standardize the pixel 
size.16 The details information of CT scan parameters 
is provided in supplementary material (online supple-
mental table S1).

Characteristics

Entire 
cohort
(N=240)

Training cohort (N=171)

P value

Testing cohort (N=69)

P value
Non- response
(N=110)

Response
(N=61)

Non- response
(N=45)

Response
(N=24)

dNLR*       0.172     0.964

  <2.38 104 (43.3） 44 (40.0） 31 (50.8）   19 (42.2） 10 (41.7）   

  ≥2.38 136 (56.7） 66 (60.0） 30 (49.2）   26 (57.8） 14 (58.3）   

LDH       0.197       

  ≤250 141 (58.8） 61 (55.5） 40 (65.6）   25 (55.6） 15 (62.5） 0.578

  >250 99 (41.2） 49 (44.5） 21 (34.4）   20 (44.4） 9 (37.5）   

ALB       0.220     0.881

  <40 96 (40.0） 54 (49.1） 24 (39.3）   12 (26.7） 6 (25.0）   

  ≥40 144 (60.0） 56 (50.9） 37 (60.7）   33 (73.3） 18 (75.0）   

Combined immunotherapy regimen       0.530     0.112

  Immunotherapy+chemotherapy 127 (52.9） 56 (50.9） 28 (45.9）   25 (55.6） 18 (75.0）   

  Immunotherapy+antiangiogenic 
therapy±chemotherapy

113 (47.1） 54 (49.1） 33 (54.1）   20 (44.4） 6 (25.0）   

Visceral metastasis       0.016     0.753

  No 104 (43.3） 42 (38.2） 35 (57.4）   17 (37.8） 10 (41.7）   

  Yes 136 (56.7） 68 (61.8） 26 (42.6）   28 (62.2） 14 (58.3）   

Number of metastatic sites       0.001     0.356

  1, 2 122 (50.8） 46 (41.8） 41 (67.2）   21 (46.7） 14 (58.3）   

  ≥3 118 (49.2） 64 (58.2） 20 (32.8）   24 (53.3） 10 (41.7）   

Data were presented as number of patients; data in parentheses were percentages unless otherwise noted*value refer to the optimal 
threshold of dNLR using the maximum Youden Index method
ALB, serum albumin; dNLR, derived neutrophil- to- lymphocyte ratio; ECOG, Eastern Cooperative Oncology Group; ER, estrogen 
receptor; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; LDH, lactate dehydrogenase; PR, progesterone 
receptor; TNBC, triple- negative breast cancer.

Table 1 Continued
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Tumor segmentation and image feature data extraction
The lesions of the patients were segmented in accor-
dance with RECIST V.1.1 criteria. We defined criteria for 
the segmentation of several targets in ABC, selecting two 
maximum two- dimensional diameter visceral metastases, 
bone metastases soft tissue lesions or lymph node target 
lesions. With no more than two target lesions per organ 
or site, distinct sites are prioritized for tumor segmenta-
tion, beginning with visceral metastatic lesions.

Two experienced radiologists (Xiaohui Duan and Zhuo 
Wu, both of whom are senior doctors in the radiology 
department with over 10 years of professional experience) 

independently viewed and segmented the above image 
using 3D slicer (V.4.11, https://www.slicer.org). In the 
event of any inconsistencies, a third senior radiologist 
consulted with both investigators and made the necessary 
adjustments.

The CT image features were extracted by radiomics 
extension module in 3D slicer,17 18 including four aspects 
of intensity features, shape features, texture features, and 
image filtering features, with a total of 1130 features. 
The initial features consist of 107 original features, 279 
LoG (Laplacian of Gaussian) features, and 744 wavelet 
features. The original features include 14 shape features, 

Figure 1 Flow chart of the study. Patients from Sun Yat- sen Memorial Hospital (SYSMH) prospective clinical trials and 
retrospective clinical trials and half of the patients from Sun Yat- sen University Cancer Center (SYSUCC) as the training set (128 
patients from SYSUCC were randomized 1:1 into two groups). The First Affiliated Hospital of Sun Yat- sen University (FAHSYSU) 
prospective clinical trials and the other half of the SYSUCC retrospective data as the validation set. The ratio of training set and 
validation set is about 5:2. CECT, contrast- enhanced CT.
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18 histogram features and 75 texture features. Among 
the texture features, 24 Gray Level Co- occurrence Matrix 
(GLCM) texture features, 16 Gray Level Run Length 
Matrix (GLRLM) texture features, 16 Gray Level Size 
Zone Matrix (GLSZM) texture features, 14 Gray Level 
Difference Matrix (GLDM) texture features, and 5 Neigh-
borhood Gray- tone Difference Matrix (NGTDM) texture 
features. LoG features and wavelet features consist of 
histogram features and texture features. The LoG filter 
with 1/2/3 kernel sizes is used to extract features, and 
the configured wavelet filter is used to calculate wavelet 
features. In the end, eight subwaves were decomposed in 
each layer, and the wavelet and LoG transforms yielded 
744 wavelet features and 279 LoG features, respectively 
(online supplemental table S2).

Model construction and performance evaluation
Clinicopathological factors with statistical differences 
(p<0.05) in univariate and multifactorial analyses were 
used to construct clinicopathological models using 
logistic regression (LR). Multilayer perceptron (MLP)19 
was used to analyze imaging features using three hidden 
layer networks to construct imaging histology feature 
models. In the integrated model construction, the 
imaging features were imported in input layer 1, and after 
three layers of network, they were added to the fourth 
layer of network together with the clinical features in 
input layer 2 (figure 2). The receiver operating character-
istic (ROC) curve, the area under the curve (AUC), posi-
tive predictive value and negative predictive value were 
analyzed to evaluate the accuracy of this radiomics model, 
and decision curve analysis (DCA) and clinical imaging 
curve (CIC) are applied to assess the net benefit.

Survival analysis
Risk ratings developed by classification models employing 
machine learning were used to predict the prognosis of 
patients with ABC. We based the scores of the clinical 
model and the deep histological model on log- rank tests 
to find the optimal cut- off value based on the data on 
both sides of a point. The optimal cut- off value was used 
to separate patients into low- risk and high- risk catego-
ries. We used Kaplan- Meier (KM) curves to measure PFS, 
along with the C statistic and risk ratio (HR) to determine 
the score’s impact on PFS.

Statistical analysis
The MLP was built using Python V.3.7.7. Statistical data 
were analyzed in this study using R software (V.4.2.0, 
http://www.R-project.org) (R packages is detailed on 
page 1 of online supplemental file 1) and SPSS V.25.0 
software (IBM SPSS V.25.0, Chicago, USA). In the anal-
ysis of baseline patient characteristics, independent t- tests 
and Wilcoxon rank- sum tests were used for continuous 
variables, and Pearson χ2 tests or Fisher’s exact tests 
were used for categorical variables. The performance of 
the categorical model was assessed through AUC calcu-
lation; and the corresponding 95% CI under ROC the 

differences were compared between AUCs by DeLong 
test. As for the survival analysis, we used a log- rank test to 
compare the differences between KM curves. A two- sided 
p value<0.05 was considered to be statistically significant.

RESULT
Clinical characteristics
In this study, a total of 240 patients (171 patients in 
the training cohort, 69 patients in the external valida-
tion cohort) were retrospectively enrolled (figure 1). 
There were no statistical significant differences in the 
baseline characteristics between the training and vali-
dation cohort (table 1). Triple- negative disease was 
present in 75.8% of the enrolled patients. About half 
of the patients (56.7%) had visceral metastasis or more 
than three metastatic lesions. All patients underwent 
anti- PD- 1 antibodies- based treatment. Combinatorial 
therapy of ICIs with chemotherapy were used in 49.1% 
(84/171) of patients in the training cohort, and 62.3% 
(43/69) of patients in the validation cohort, respectively. 
ICIs combined with anti- angiogenesis±chemotherapy 
were used in 50.9% (87/171) of patients in the training 
cohort, and 37.7% (26/69) of patients in the validation 
cohort, respectively. The above variables are equally 
distributed in the training and validation cohorts, and 
there is no statistically significant difference between 
these two cohorts.

Among the 240 patients, 6.7% patients (n=16) showed 
CR, 28.7% patients (n=69) showed PR, 42.1% patients 
(n=101) showed SD, and the rest of patients presented 
PD (n=54, 22.5%) (online supplemental figure S1). 
The overall disease control rate (DCR) was calculated 
at 77.5% (186 of 240). Immunotherapy- benefit was asso-
ciated with lines of previous therapy in the context of 
metastatic disease (p=0.020), visceral metastasis status 
(p=0.016) and tumor metastasis burden (p=0.001) in the 
training cohort. No significant difference was detected 
in terms of age, BMI, menopausal status, molecular 
subtype, CPS, and immunotherapy regimen (p>0.05) 
between patients who responded to immunotherapy or 
otherwise. Multivariable LR analysis further revealed that 
lines of previous therapy (OR=0.35, 95% CI: 0.16 to 0.77, 
p=0.009) and tumor metastasis burden (OR=0.42, 95% CI: 
0.18 to 0.99, p=0.047) were both significant predictors of 
immunotherapy- benefit in the training cohort (online 
supplemental figure S2). Hence, combined these two 
factors with visceral metastasis status and molecular 
subtype, the clinical model was constructed as a baseline. 
However, the performance of clinical model in predicting 
immunotherapy response status was unsatisfactory, with 
AUC values of 0.672 (95% CI: 0.588 to 0.756), and 0.634 
(95% CI: 0.495 to 0.772) in the training cohort and vali-
dation cohort (figure 3E,F, table 2). Furthermore, the 
inclusion of PD- L1 status (CPS score) did not significantly 
improve the accuracy of clinical model (online supple-
mental figure S3 and table S3).
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Selection of radiomics feature and establishment of prediction 
model
After combining all extracted radiomics features, we 
used a MLP algorithm to select the features that are most 
closely correlated with immunotherapy- response in the 
training cohort. The following nine category of radio-
mics features were finally selected: Original_Shape, Orig-
inal_First Order Histogram Features, Original_GLCM, 
Original_GLDM, Original_GLRLM, Original_GLSZM, 
Original_NGTDM, Wavelet transform, and LoG trans-
form. The specific image features encapsulated in each 
category were listed in online supplemental table S2. 

Then, the radiomic features were used to build a model 
to predict the immunotherapy response. The immuno-
therapy response status of patients with ABC predicted 
by the radiomics model was in good agreement with the 
actual clinical immunotherapy response status in both 
training and validation cohorts (figure 3A,C). Further-
more, the radiomics model also obtained a high accuracy 
with an AUC of 0.994 (95% CI: 0.988 to 1.000) in the 
training cohort, and 0.920 (95% CI: 0.824 to 1.000) in the 
validation cohort, respectively (figure 3E,F, table 2). The 
calibration curves of the radiomics model showed good 
agreements between the model prediction and actual 

Figure 2 Radiomics workflow (A) The workflow includes data collection, design of the study, ROI delineation, image feature 
extraction and machine learning model construction. (B) Model performance evaluation and validation. AUC, area under the 
curve; BMI, body mass index; CPS, Combined Positive Score; ECOG, Eastern Cooperative Oncology Group; dNLR, derived 
neutrophil- to- lymphocyte ratio; LDH, lactate dehydrogenase; LoG, Laplacian of Gaussian; ROI, region of interest; PD- L1, 
programmed death- ligand 1.
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observation in the training cohort and validation cohort, 
respectively (figure 3G). DCA indicated that the highest 
overall net benefit was achieved in the radiomics model 
compared with the clinical model (figure 3H). The CIC 
showed that the radiomics model could target the immu-
notherapy response population accurately (figure 3I).

Furthermore, we integrated the clinical features into 
the radiomics model to develop a clinical- radiomics 
model in order to obtain better prediction performance. 
Interestingly, the clinical- radiomics model did not achieve 
significant improvement compared with the radiomics 
model, with AUCs of 0.997 (95% CI: 0.993 to 1.000) and 
0.961 (95% CI: 0.885 to 1.000) in training and validation 
sets, respectively (figure 3B, D, E and F, table 2). The 
calibration curves, DCA and CIC analysis showed similar 

agreement between radiomics model and the clinical- 
radiomics model, as well (figure 3G, H and J).

The prediction accuracy of the radiomics model and 
the clinical- radiomics model were both better than the 
clinical model (figure 4A,B, online supplemental table 
S4). Additionally, 108 of 110 (98.2%) patients with non- 
response in the training cohort, and 45 of 45 (100%) 
patients with non- response in the validation cohort were 
successfully identified by the radiomics model. Mean-
while, 58 of 61 (95.1%) patients with response in training 
cohort, and 21 of 24 (87.5%) patients with response in 
validation cohort were successfully identified by the 
radiomics model (figure 4C, table 2). Moreover, 107 of 
110 (97.3%) patients with non- response in the training 
cohort, and 45 of 45 (100%) patients with non- response 

Figure 3 Performance of the predict models in training and validation sets. (A and B) Distribution of predictive score of 
radiomics and combined models among responders and non- responders in training set and testing set. The *** represents, 
p<0.001. (C) Waterfall of prediction score distribution between non- responders and responders in the training set of the 
radiomics model. (D) Waterfall of prediction score distribution between non- responders and responders in the training set of 
the combined model. (E and F) Receiver operating characteristic analysis of predict models for predicting response status in 
the training set and validation set, respectively. (G) The calibration curve of radiomics and combined models in the training 
cohort and validation cohort. (H) Decision curve analysis for the combined model (blue), image model (red) and clinical model 
(green) in the training set; the y- axis indicates the net benefit; x- axis indicates threshold probability. The gray line represents 
the assumption that all patients were responders. The black line represents the hypothesis that no patients were responders. 
(I and J) CIC showed the estimated number of image models that would be declared high risk for each risk threshold and the 
proportion of true positive patients, I represents the radiomics model training set CIC, J represents the combined model training 
set CIC. AUC, area under the curve; CIC, clinical imaging curve.  on A
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in the validation cohort were also identified by the 
clinical- radiomics model successfully. Meanwhile, 60 of 61 
(98.4%) patients with response in training cohort, and 23 
of 24 (95.8%) patients with response in validation cohort 
were successfully identified by the clinical- radiomics 
model (figure 4D, table 2).

The radiomics model was capable of dividing patients 
into two risk cohorts with significantly different PFS both 
in training set and validation set, with HR of 2.705 (cut- off 
point=0.209, 95% CI: 1.888 to 3.876, p<0.001, figure 5A) 
and 2.625 (cut- off point=−0.424, 95% CI: 1.506 to 4.574, 
p=0.001, figure 5B), respectively (online supplemental 
table S5). Moreover, the median PFS in the low- risk 
group was more than twice as much as that in the high- 
risk group (10.12 m vs 3.75 m for the training set, and 
7.26 m vs 3.02 m for the validation set, (online supple-
mental table S6). Similarly, the clinical- radiomics model 
was also capable to distinguish the better PFS for the low- 
risk patients with an HR of 2.464 (cut- off point=−0.086, 
95% CI: 1.720 to 3.529, p<0.001, figure 5C) in the training 
cohort, and 2.564 (cut- off point=−0.857, 95% CI: 1.469 
to 4.475, p=0.001, figure 5D) in the validation cohort, 
respectively (online supplemental table S5).

Then, we conducted subgroup analyses based on PD- L1 
status (CPS score), prior regimens, molecular subtype, 
tumor metastatic burden and immunotherapy regimens. 
The radiomics model achieved a good performance 
both in CPS- high and CPS- low groups, with AUC values 
of 1.000 (CPS- high) and 0.996 (CPS- low) in the training 
cohort, and 0.778 (CPS- high) and 1.000 (CPS- low) in 
the validation cohort (DeLong test p=0.305), respec-
tively (figure 6A, online supplemental table S7). We also 
conducted a subgroup analysis based on the molecular 
subtype of these patients with breast cancer. Prediction 
within TNBC and non- TNBC subgroups all performed 
well, with AUC values of 0.997 (TNBC), and 0.994 (non- 
TNBC) in the training cohort, and 0.910 (TNBC), and 
0.988 (non- TNBC) in the validation cohort (figure 6B, 
online supplemental table S8). The performances of the 
radiomics model in the different subgroups of lines of 
previous therapy, tumor metastatic burden and combined 

immunotherapy regimens, were similar, too (figure 6C–F, 
online supplemental tables S9–S12). The immuno-
therapy regimens with or without antiangiogenic therapy 
did not affect the accuracy of the radiomics model, as well 
(figure 6F, online supplemental table S12). The perfor-
mance of the clinical- radiomics model was not influenced 
by PD- L1 status, tumor metastatic burden or molecular 
subtype, as well (online supplemental figure S4 and tables 
S7–S12).

DISCUSSION
Immunotherapy, especially anti- PD- 1/PD- L1 antibodies, 
brings ‘breakthrough’ improvements in treatments for 
patients with ABC,13 14 but only a minority of patients 
can benefit from immunotherapy. How to accurately 
and non- invasively locate these immunotherapy- benefit- 
population is the current leading challenge in the field. 
In this study, we developed the first radiomics model 
for immunotherapy response prediction specifically 
for patients with ABC. And this non- invasive prediction 
model performed effectively both in the training and vali-
dation cohort with AUC of 0.994 and 0.920, respectively. 
Moreover, the accuracy of the radiomics model was not 
influenced by PD- L1 status, tumor metastatic burden, 
molecular subtype or combined regimens. This radio-
mics model provided an innovative, accurate and robust 
approach to stratify patients with ABC who may benefit 
from ICIs- based therapies and aid the personalized deci-
sion in the treatment of ABC.

Although previous studies suggest that some biomarkers 
such as PD- L1, TMB, TILs, and MSI/dMMR can predict 
response of ICIs- based therapies in ABC,4–7 all these 
biomarkers assessment requires multiple tumor sampling, 
invasive tissue biopsy, high associated costs, and unsatis-
factory accuracy, which limit their clinical applications. 
Therefore, development of a non- invasive prediction 
model of immunotherapy response is required. In our 
study, several imaging features showed association with 
ICIs response of patients with ABC, and these correla-
tions indicated that radiomics features may be used to 

Table 2 Performance of predict models for predicting efficacy of combined immunotherapy in patients with advanced breast 
cancer

Value

Training set Testing set

Clinical model Radiomics model Combined model Clinical model Radiomics model Combined model

AUC 
(95% CI)

0.672 (0.588 to 
0.756）

0.994 (0.988 to 
1.000）

0.997 (0.993 to 
1.000）

0.634 (0.495 to 
0.772）

0.920 (0.824 to 
1.000）

0.961 (0.885 to 
1.000）

SEN 0.557 0.951 0.984 0.500 0.875 0.958

SPE 0.718 0.982 0.973 0.800 1.000 1.000

ACC 0.661 0.971 0.977 0.696 0.957 0.986

PPV 0.523 0.967 0.952 0.571 1.000 1.000

NPV 0.745 0.973 0.991 0.750 0.938 0.978

ACC, accuracy; AUC, area under the receiver operating curve; NPV, negative predictive value; PPV, positive predictive value; SEN, sensitivity; 
SPE, specificity.
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develop a non- invasive model to predict immunotherapy 
benefits in ABC.

To our knowledge, this is the first study to apply radio-
mics to infer clinical outcomes of patients with ABC 
with immunotherapy treatment. Previous studies have 
explored radiomics as a biomarker of immune status, 
or immunotherapy- prediction value among patients 
with lung cancer or melanoma, but no patients with 
breast cancer were included in these studies. Su et al 
established a TILs prediction radiomics model by retro-
spectively analyzing the preoperative dynamic contrast 
enhanced MRI (DEC- MRI), transcriptomics data and 

postoperative TILs data of 139 patients with TNBC, and 
found that high Rad- TILs tumors was characterized with 
enriched immune- related pathways, hot immune micro-
environment and relatively inflammatory TME.20 This 
is an important work to explore radiomics and immune 
biomarkers in patients with breast cancer. Unfortunately, 
patients with breast cancer in this study did not receive 
immunotherapy, so the immune efficacy of patients could 
only be inferred indirectly through TILs. Coincidentally, 
He et al also explored associations between radiomic 
model and TMB, another immune biomarker, through 
CT images of 327 patients with lung cancer. The radiomic 

Figure 4 Comparison of prediction capabilities of various models. (A) Violin plot of predict models for non- responders and 
responders in the training set. The *** represents, p<0.001. (B) Violin plot of predict models for non- responders and responders 
in the validation set. The ns represents, p>0.05; the *** represents, p<0.001. (C) The number of events of true positive, false 
negative, true negative, and false positive for the radiomics model in the training cohort and external validation cohorts. (D) The 
number of events of true positive, false negative, true negative, and false positive for the combined model in the training cohort 
and external validation cohorts.
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model was validated in 123 patients with non- small cell 
lung cancer with ICIs treatment and was able to success-
fully distinguish high- risk patients from low- risk patients.21 
However, since the radiomics model was established 
based on TMB, it was not a direct prediction of immuno-
therapy response, and the results should be interpreted 
with caution. Sun et al developed a radiomics signature 

to predict CD8 cell tumor infiltration by CT images 
and RNA sequencing data of patients with advanced 
solid tumors. The radiomic signature was further used 
to predict the immunotherapy response of 137 patients 
with advanced solid tumors (only 17 patients with breast 
cancer involved).22 Notably, the study did not construct 
a predictive model for immunotherapy response and 

Figure 5 The prognostic value of the radiomics model and combined model in immunotherapy. (A) The Kaplan- Meier curves of 
the radiomics model depict PFS in high- risk and low- risk groups for training sets. (B)The Kaplan- Meier curves of the radiomics 
model depict PFS in high- risk and low- risk groups for validation sets. (C) The Kaplan- Meier curves of the combined model 
depict PFS in high- risk and low- risk groups for training sets. (D) The Kaplan- Meier curves of the combined model depict PFS in 
high- risk and low- risk groups for validation sets. PFS, progression- free survival.
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Figure 6 Subgroup analysis of the radiomics model in the training and validation set. (A) AUC of subgroup analysis stratified 
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stratified by molecular subgroups (TNBC vs non- TNBC) in the training and validation cohorts. (C) AUC of subgroup analysis 
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included very few patients with breast cancer. As a ‘cold’ 
tumor, breast cancer has a lower sensitive population to 
immunotherapy compared with lung cancer or mela-
noma. Therefore, the development of a predictive model 
for immunotherapy response in breast cancer by non- 
invasive imaging means is of great clinical value.

Regarding the clinical applicability, the radiomics 
model has the potential to assist the decision of ICIs- based 
therapies for patients with ABC. In the training cohort, of 
the 61 patients who were sensitive to immunotherapy, 58 
patients (95.1%) were successfully identified by the radio-
mics model. While, of the 110 patients who were resistant 
to immunotherapy in this study, 108 patients (98.2%) were 
accurately identified by the radiomics model. Likewise, in 
the validation cohort, of the 24 patients who were sensi-
tive to immunotherapy, 21 patients (87.5%) were success-
fully identified by the radiomics model. While, of the 45 
patients who were resistant to immunotherapy in this 
study, 45 patients (100%) were accurately identified by 
the radiomics model. Thus, the radiomics model allowed 
98.2% to 100% of patients to avoid immunotherapy- 
related toxicity and 87.5% to 95.1% of patients to receive 
immunotherapy accurately. This radiomics model may 
increase the precision of immunotherapy and enhance 
personalized decision in the treatment of ABC.

Furthermore, our study included the largest popula-
tion of patients with breast cancer treated with immu-
notherapy at present. Two hundred and forty patients 
with ABC from three different academic hospitals were 
recruited for development and validation of our radio-
mics model. Among which, 61 patients were enrolled 
from two prospective clinical trials, which showed prom-
ising efficacy of anti- PD- 1 antibody in combination with 
vascular endothelial growth factor receptor 2 (VEGFR2) 
tyrosine kinase inhibitors (TKI)±eribulin chemotherapy 
in treating advanced TNBC, regardless of PD- L1 status.13 14 
The characteristics of large sample size, multicentered 
patient recruitment and partial population from prospec-
tive trials greatly improved the data quality and reliability 
of this study, and are conducive to building a more precise 
and robust prediction model. The accuracy of the radio-
mics model was not influenced by PD- L1 status, tumor 
metastatic burden or molecular subtype. Therefore, this 
radiomics model could be used as a useful aid to assist 
clinicians make rational decisions on immunotherapy, so 
as to improve the benefits of immunotherapy for patients 
with breast cancer and avoid unnecessary adverse effects.

Our study had several limitations that should be 
acknowledged. First, the heterogeneity of the data from 
multicenter, especially for imaging parameters, could 
affect radiomics features, even though we have made 
some efforts to weaken this effect (all CT images were first 
resampled to the same image spacing using cubic spline 
interpolation to standardize the pixel size to eliminate 
image differences between images acquired by different 
CT instruments; MLP was used to analyze imaging 
features using three hidden layer networks to construct 
imaging histology feature models). Second, recent studies 

indicated that several specific gene mutations (such as 
TP53, MDM2, MDM3, STK11, among others) could affect 
the efficacy of immunotherapy. Due to lack of genomic 
sequencing data, we were unable to compare the predic-
tive accuracy of the radiomics model with these immune- 
associated gene mutation scenarios.

In conclusion, our study suggests that this radiomics 
model could be an efficient, non- invasive, cost- effective, 
and reliable way to predict patients with ABC’s responses 
to ICIs- based therapies. Our findings still need to be 
confirmed by large- scale prospective studies in the future.
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