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ABSTRACT
Rapid advancements in the area of early cancer detection 
have brought us closer to achieving the goals of finding 
cancer early enough to treat or cure it, while avoiding 
harms of overdiagnosis. We evaluate progress in the 
development of early cancer detection tests in the context 
of the current principles for cancer screening. We review 
cell-free DNA (cfDNA)-based approaches using mutations, 
methylation, or fragmentomes for early cancer detection. 
Lastly, we discuss the challenges in demonstrating clinical 
utility of these tests before integration into routine clinical 
care.

INTRODUCTION
The early detection of cancer is intended to 
identify a malignant transformation in asymp-
tomatic individuals at average risk or elevated 
risk of developing cancer, that is measur-
able by a screening test, but not advanced 
enough to cause clinical symptoms or to be 
detected during usual clinical care. In this 
way, tumors can be intercepted earlier than 
current efforts. The underlying premise of 
early detection and interception efforts is that 
finding cancers at early stages, or even high-
risk premalignant lesions, allows for cura-
tive or earlier treatment leading to reduced 
mortality and morbidity. For example, the 
National Lung Screening Trial has shown 
that early detection and interception of lung 
cancer through surgical resection reduces 
overall mortality in this high-risk population.1 
The actualization of early cancer detection 
and interception, however, is not simple. The 
challenge is ‘bringing to treatment those 
with previously undetected disease and… 
avoiding harm to those persons not in need 
of treatment’.2 Currently only five cancer 
types—breast, cervical, colorectal, lung, and 
prostate—have widely accepted screening 
tests and only four have national screening 
recommendations in the USA (online supple-
mental table S1).3 While these five cancer 
types represent some of the more commonly 
diagnosed in men and in women in the USA,4 
most cancer types remain without a screening 

test or endorsed screening protocol. In addi-
tion, for those cancers with demonstrated 
benefits of early detection, there remains 
substantial room for improving the acces-
sibility of screening approaches worldwide 
and the benefit-to-risk ratios. To this end, 
the concept of blood-based, cell-free DNA 
(cfDNA)-based early cancer detection testing 
holds promise to close the cancer screening 
gap in underserved populations.

The cfDNA molecules present within the 
circulation were described as early as 1948, 
with the majority of cfDNA being derived 
from dying white blood cells (WBCs), vascular 
endothelial cells, and hepatocytes.5 6 However, 
for individuals with cancer, circulating tumor-
derived DNA (ctDNA) can be shed into the 
bloodstream, providing an opportunity for 
early cancer detection through liquid biopsy 
approaches. Recent technological advance-
ments in the characterization of ctDNA,5 7–9 
including those to inform therapy selection 
through detection of EGFR gene mutations 
or other actionable changes in panels of 
genes10–12 have demonstrated the feasibility 
and clinical utility of blood-based tests to 
guide the clinical management of patients 
with cancer, typically at late stages. Indeed, 
based on the findings of recent studies in 
advanced non-small cell lung cancer,13–16 a 
plasma-first approach has been proposed and 
incorporated into clinical guidelines in lung 
cancer.17 18

Despite these initial successes, the use of 
cfDNA approaches for early cancer detec-
tion has been more challenging because it 
requires the ability to detect hallmarks or 
evidence of cancer in the circulation of indi-
viduals with no known diagnosis or symptoms 
of disease. Two important events opened the 
field in this regard: the realization that wide-
spread chromosomal abnormalities that arise 
during tumorigenesis can be detected in 
the circulation of patients with cancer using 
whole-genome sequencing of cfDNA19 20 
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and the detection of cancer in women who had under-
gone non-invasive prenatal testing through detection of 
chromosomal changes first believed to be of fetal origin 
but subsequently determined to originate from hemato-
logical or solid cancers in the mothers.21 22 The stage of 
the cancers detected in these individuals ranged from 
stage II to IV, suggesting that signals from even localized 
cancers could be detected in the blood of asymptom-
atic/presymptomatic individuals. The intensive research 
efforts that ensued intially led to two sets of approaches 
that identified either mutations or methylation changes 
in cfDNA and could detect individuals with asymptomatic 
cancer, although at high cost and with low sensitivity to 
detect stage I disease.9 23–26

With proof-of-concept established that signals of 
cancers can be detected from blood of asymptomatic/
presymptomatic individuals, a second wave of questions 
naturally arose regarding clinical validity: Can early-stage 
(stage I) cancers be detected reliably? Can cancer signals 
be traced to the organ of origin? And even thornier clin-
ical utility questions emerged: Can finding early cancers 
in the blood benefit patients—especially since a posi-
tive benefit/harm ratio for screening has not yet been 
demonstrated for all cancer types?27–30 Health economics 
questions arose, too. Can a test be done affordably to 
enable widespread population access? Or is a narrower 
high-risk population the best to target? Further research 
is needed to determine both the optimal frequency and 
the cost-effectiveness of testing, to ensure that individuals 
have the most favorable outcomes from testing balanced 
with their or society’s willingness to cover the costs of 
these approaches. Considering the promise and the 
constraints, we have arrived at a challenging crossroad. 
Before we actualize the detection of early-stage cancers, 
we should consider the principles that guide testing for 
early cancer detection and how the emerging technolo-
gies measure up to those principles.

The principles of screening
In 1968 Wilson and Jungner published a set of principles 
to guide the selection of diseases amenable to screening2 
that are largely considered the gold standard in the assess-
ment of screening decisions. These principles have been 
reevaluated more than once (online supplemental table 
S2), as technology has made it easier to detect diseases, 
including cancers, in earlier, preclinical stages using 
molecular diagnostic tests that characterize genomic 
rather than pathological alterations. Here we apply the 
most recent iteration of the principles of screening31 as 
early detection tests come of age. We will focus primarily 
on the disease and test principles (the principles for 
screening programs are beyond the scope of this article; 
see online supplemental table S3).

The principles state that the disease or condition, in 
this case cancer, should be an important health problem, 
with well-understood epidemiology and natural history, 
a detectable preclinical phase, and clearly defined target 
population for testing. A prudent approach with any new 

technology would be to use it for the group most likely to 
benefit—in this case, those who are most likely to develop 
cancer. Doing so intrinsically improves the potential ratio 
of benefits to harms. Once evaluations in targeted elevated 
risk populations prove successful, incremental expansions 
of the target population can be undertaken informed by 
risk and harm data. This is consistent with guidance from 
the WHO regarding the use of pilot screening programs 
to gather real-world data to inform more widespread 
screening based on evidence.32 33 The United States 
Preventive Services Task Force already recommends 
screening for four cancer types (lung, colorectal, breast 
and cervical), so applying new screening technologies to 
one or more of these cancer types is a reasonable initial 
approach.

According to the principles, a cancer screening test 
should be fit for purpose, have good performance 
characteristics, be acceptable and affordable to the 
target screening population, and have clinical utility. 
The emergence of new technologies for the analysis of 
cfDNA circulating in the blood holds great promise to 
improve performance and access of current screening 
and may enable screening for other cancers for which no 
approaches are currently available. Because the amount 
of tumor-derived ctDNA present in patients with early-
stage cancer can be relatively small compared with the 
total amount of cfDNA, looking for evidence of cancer 
in the blood of asymptomatic individuals is very much a 
needle-in-a-haystack problem. Methods and techniques 
have become available to find that ‘needle’; the chal-
lenge is to do so with robust performance characteristics 
in early-stage cancers and at affordable costs.

Today, there are three basic approaches to the detec-
tion of cancer by analyses of cfDNA (table  1). These 
approaches include testing for (1) somatic mutations, (2) 
methylation profiles, or (3) whole-genome fragmentation 
profiles (figure 1).

Cancer screening using somatic mutations
DNA sequencing of tumor DNA has been widely used in 
the development of companion diagnostic tests to select 
appropriate targeted therapies for individual patients. 
The great majority of Food and Drug Administration-
approved companion diagnostic tests are based on 
sequencing tumor samples for the presence of specific 
mutations (eg, EGFR T790M mutation) to guide treat-
ment selection.33 Use of mutation-based ctDNA detec-
tion approaches for screening asymptomatic individuals, 
however, has not gained traction, largely because the 
amount of ctDNA is very small (often <1% of the total 
cfDNA) in early-stage cancer. Such an approach to asymp-
tomatic screening would necessitate sequencing very 
deeply (>10,000×) and using error-reducing sequencing 
approaches (eg, molecular identifiers combined with 
redundant sequencing and consensus calling) to reli-
ably determine if rare mutated-DNA fragments are 
present in cfDNA. Using whole-genome sequencing 
for such approaches would be prohibitively expensive. 
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Figure 1  Liquid biopsy approaches for cancer detection. Cell-free DNA technologies evaluating mutations or methylation 
are often costly, multistep, time consuming processes prior to data analyses. Low-coverage whole-genome sequencing 
approaches can minimize arduous laboratory protocols at low-cost with broadly applicable bioinformatic pipelines. cfDNA, cell-
free DNA; MAF, mutant allele frequency.
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To get a sense of the challenge, DNA sequencing for a 
specific mutation at 60,000-fold unique coverage depth 
will only reveal on average 30 tumor-derived heterozy-
gous mutant molecules if the ctDNA amount is 0.1%. 
Furthermore, sequencing this deeply would require that 
the investigated sample contains 60,000 unique DNA 
fragments covering all genomic loci. To reliably reach 
this number in a testing environment, one would have 
to analyze cfDNA from a substantial volume of blood 
(>20 mL). Given the challenges of performing such deep 
sequencing on a genome-wide scale, most approaches 
explored up to now have been restricted to sequencing of 
predefined gene panels (eg, selected DNA fragments with 
genes frequently mutated in the target cancers) by either 
capture-based or multiplex-PCR–based approaches, all 
of which increase the cost and effort of such methods 
(table  1, figure  1).9 12 26 32 34–40 Further refinement of 
somatic mutation-based approaches to early cancer 
detection are needed to make these more affordable for 
implementation on a population scale. Beyond individual 
mutations, genome-wide mutational signatures, such as 
C:G>A:T changes, are known to be increased in certain 
regions of tumors of individuals with a smoking exposure 
and may improve cancer detection.41–43

Another hurdle associated with somatic mutation-based 
approaches is determining whether the source of the 
alteration is from the tumor or WBCs. If somatic muta-
tions were found in asymptomatic individuals, additional 
sequencing or imaging would be needed to determine 
the source of the mutation and its clinical relevance.26 
Leal et al reported that more than half of mutations in the 
TP53 gene detected in the blood were derived from WBCs 
highlighting the challenges of pinpointing the cellular 
origin of plasma mutations.44 Consequently, targeted 
somatic mutation analysis as a standalone approach lacks 
the utility needed for widespread use in cancer screening 
of asymptomatic individuals. It comes as no surprise that 
approaches relying on somatic mutations are now being 
combined with other biomarkers.45

Cancer screening using methylation profiles
Methylation of promoter DNA sequences is a common 
mechanism used to regulate gene expression.46 47 Because 
cancer development and progression are frequently asso-
ciated with aberrant patterns of DNA methylation,48 49 
and PCR and next-generation sequencing (NGS)-based 
methods with high analytical sensitivity are available, 
methylation profiling has been developed as a means 
to detect cancer.50 51 Methylation profiling evaluates 
epigenetic profiles of cells that have lysed and distributed 
their contents into circulation. It measures the methyla-
tion status of subsets of the ~28 million CpG sites in the 
genome.52 These sites are not equally distributed across 
the genome, and many are concentrated in ~30,000 CpG 
islands that are located near the promoters of genes and 
have a critical role in regulating gene expression.52 Since 
the genes expressed in each cell type are different, these 

patterns of differential methylation can be used to iden-
tify the cell of origin of circulating cfDNA molecules.

Methylation screening approaches range from 
measuring a single gene to using a panel of predefined 
methylation sites that have been shown to be differen-
tially methylated in cancer cells and WBCs.53–56 PCR-based 
approaches to detect methylation require preselection of 
a set of target genes and cannot be done on an unselected 
genome-wide basis.57 A broader enrichment for methyla-
tion sites involves hybrid capture of small regions of the 
genome containing a subset of CpG sites, typically using 
bisulfite conversion, amplification, and sequencing to 
determine the methylation status at each site, and appli-
cation of an algorithm to determine the presence of 
cancer-derived DNA in the sample and the cell of origin 
of the cancer-derived DNA molecule (figure  1).25 58 A 
more comprehensive approach to methylation profiling 
for cancer detection uses immunoprecipitation of cell-
free methylated DNA to isolate the methylated DNA 
regions throughout the genome and then analyses of 
these by NGS (table  1).24 59 More recently, methylation 
approaches coupled with mutation detection from the 
same DNA molecule have been developed.60

Cancer screening using whole-genome sequencing
Evaluation of cfDNA fragmentation patterns, known as 
‘fragmentomes’, represent the most recent advancement 
in cfDNA-based screening modalities.61 These emerging 
new approaches focus on the physical characteristics 
of cfDNA fragments, which vary markedly across the 
genome in cfDNA derived from tumor cells compared 
with WBCs.61–63 Early observations suggested that tumor-
derived cfDNA is shorter overall when compared with 
non-cancer cfDNA molecules.64 More recent findings 
showed that mutated tumor-derived DNA from different 
regions in the genome could be smaller or larger than 
wild-type non-cancer cfDNA.61 Additionally, these studies 
revealed that germline mutations as well as variants 
related to clonal hematopoiesis, which can confound 
mutation-based analyses, harbor cfDNA fragment size 
distributions that are similar to non-cancer cfDNA and 
therefore should not influence fragment size based 
approaches.44 61 65 This previously unappreciated knowl-
edge provides a robust foundation for genome-wide 
fragmentome based approaches focused on early cancer 
detection.

The intracellular and extracellular DNA fragmenta-
tion processes associated with apoptosis and necrosis 
involve enzymes including caspases and endonucleases 
that cleave chromosomal DNA molecules into short frag-
ments. These cleavage sites are non-random and deter-
mined in part by the association of the DNA molecules 
with the nucleosomal proteins, which protect the DNA 
from endonuclease digestion.66 On a genome-wide level, 
cfDNA fragmentation has been shown to reflect broader 
patterns of chromatin structure.66 The cellular genome 
is organized into two basic patterns known as open and 
closed chromatin that is mechanistically linked to the 
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regulation of gene expression. The regions of open and 
closed chromatin are highly conserved and character-
istic of the unique gene expression profile in each cell 
type. The three-dimensional chromatin organization is 
quite different in the open and closed chromatin and 
controls binding of the RNA transcription complex to 
the template DNA. This three-dimensional structure also 
affects the binding of other large protein molecules and 
complexes, such as the endonucleases and caspases, to 
the DNA resulting in reproducible patterns of cleavage in 
each cell type. Consequently, the cleavage patterns deter-
mined by the basal chromatin organization can be used to 
differentiate between cfDNA derived from different cell 
types, and between cancer and normal cells. The result 
is that the cfDNA fragmentome is both characteristic of 
the cell type/organ from which it originates, and distinct 
between cancer and normal cells.61

Historically, only a few approaches had leveraged 
genome-wide cfDNA analyses, including those to assess 
changes in chromosomal copy number,19 nucleosomal 
footprints,66 fragment lengths,67 transcription start sites68 
or transcription factor binding sites.69 Genome-wide 
analyses of cfDNA fragmentomes led to the realization 
that changes in cfDNA size and coverage throughout 
the genome using machine learning models could be 
used for early detection61. Additional analyses from 
whole genome sequencing of cfDNA have included end 
motifs,70 and fragment end position aberrancy.71 These 
recent advances in cfDNA fragmentation biology provide 
orthogonal approaches to detect cancer beyond existing 
methods.

The majority of cfDNA fragment-based approaches 
rely on whole-genome next-generation sequencing 
data, unlike mutation analyses that mainly use targeted 
tumor-specific gene panels with deep coverage (table 1, 
figure  1).9 12 32 34 72 More recently, whole-genome 
sequencing to detect mutations has emerged73 but this 
genome-wide sequencing approach requires tumor tissue, 
WBCs, and plasma biomaterials to be sequenced at high 
coverage (~35×), making it more suitable for identifica-
tion of minimal residual disease rather than early cancer 
detection. Variations to this method have used whole-
exome tumor-tissue sequencing to identify personalized 
tumor-specific targets that are subsequently analyzed 
in plasma after therapeutic intervention.35 37 38 74 These 
evolving mutation-based approaches, while effective, 
require substantial logistics, including in obtaining both 
tissue and blood specimens, as well as operational costs 
that may limit clinical feasibility. Alternatively, emerging 
advancements of fragmentomics may lower such barriers 
to entry not only in the setting of minimal residual disease 
but for early detection screening (table 1).

To this end, a recent cfDNA fragmentation approach 
has been described that involves the extraction of cfDNA 
from plasma, construction of whole-genome libraries, 
low-coverage whole-genome sequencing, and application 
of a machine learning algorithm to predict the presence 
of cancer DNA (figure 1). This approach has been tested 

in a multi-cancer cohort,61 a hepatocellular carcinoma 
cohort,63 as well as a large lung cancer cohort.62 Studies 
so far have shown that fragmentation-based detection has 
promising sensitivity for the detection of localized early-
stage cancers (stage I/II).61 62 Because fragmentation 
profiles can be determined through low-coverage whole-
genome sequencing and there are potentially millions of 
fragment changes in the cfDNA originating from a cancer 
cell, the cfDNA fragmentation approach has potential to 
be widely available at low cost, satisfying the principle in 
that a screening test be accessible and acceptable to the 
target screening population (online supplemental table 
S2). Moreover, whole-genome fragmentation analyses do 
not require expensive gene-capture panels or bisulfite 
conversion of DNA prior to sequencing, a step during 
which substantial amounts of the DNA sample are lost 
(figure 1). In addition, all tumor-derived cfDNA is poten-
tially assessed for the test, inherently increasing analyt-
ical sensitivity, compared with approaches that use only 
specific regions of the tumor DNA as input. That said, the 
steps involved in fragmentation analysis, including blood 
sample collection, cfDNA extraction, DNA sequencing, 
and machine-learning models, must be reproduced reli-
ably for the test to remain robust, and it remains uncer-
tain how much process variation can be accommodated 
in fragmentation analyses.

Impact of inflammatory conditions on cfDNA
Non-malignant diseases that involve the host immune 
system, such as chronic inflammation or autoimmunity, 
have demonstrated an increase in cfDNA levels in the 
blood.75 76 The elevated release of cfDNA into circulation 
could lead to a larger ‘haystack’ of cfDNA molecules that 
may affect the ability for a few low-quantity ctDNA mole-
cules to be detected by mutation-based cancer tests. In 
fact, most cfDNA-focused mutation studies exclude indi-
viduals with inflammatory conditions, while only a few 
studies evaluate mutations in conditions such as chronic 
liver diseases or neoplasia from inflammatory bowel 
disease.77 78

By contrast, the use of cfDNA fragmentation-based 
approaches in individuals with inflammatory or autoim-
mune diseases have been reported for patients with liver 
or lung cancer.62 63 70 Jiang et al showed that fragment 
end motifs in healthy individuals and those with hepa-
titis B virus infection (with or without cirrhosis) are more 
similar to each other than to motifs of persons with hepa-
tocellular carcinoma.70 In parallel, the development of an 
approach that assesses genome-wide fragment position 
through an information-weighted fraction of aberrant 
fragments value also observed that profiles from non-
cancer individuals were similar to those from individuals 
harboring the hepatitis B virus with or without cirrhosis.71 
Recently, Foda et al evaluated genome-wide cfDNA frag-
mentomes in cancer-free individuals with viral hepatitis 
or liver cirrhosis and observed low fragmentome scores 
comparable to those individuals without inflammation or 
cancer.63 In a study of a prospectively collected population 
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of patients at high risk of developing lung cancer, cfDNA 
fragmentomes of individuals with or without autoim-
mune diseases were not statistically significant, and levels 
of circulating inflammatory markers C-reactive protein 
and interleukin 6 did not correlate with fragmentome-
based scores in non-cancer individuals, suggesting that 
genome-wide fragmentation is not skewed by the pres-
ence of chronic inflammation.62 In summary, the current 
literature suggests that inflammatory diseases leading to 
increased cfDNA levels may have an impact on detec-
tion of cfDNA mutations but fragmentation approaches 
appear robust in this setting.

Proof-of-principle early cancer detection studies
Currently, multiple efforts are ongoing to develop liquid 
biopsy screening tests that effectively enable multi-cancer 
early detection (MCED) (table  2). Liquid biopsy early 
cancer screening in this setting necessitates a high spec-
ificity to reduce potentially adverse clinical intervention 
from false positives as well as to minimize overdiagnosis. 
To achieve such standards of test performances, cfDNA 
assay features have leveraged the biological oncogenic 
process such as mutations, protein biomarkers, methyl-
ation, and fragmentation features from plasma.61 79 80 
The CancerSeek initial proof-of-concept approach across 
eight cancer types from a total of 1005 individuals 
introduced the potential applicability of mutations and 
protein biomarkers as a way to detect cancers early.79 
While preliminary data from the CancerSeek approach 
was promising, clinical translation through a prospective 
interventional study known as DETECT-A (Detecting 
cancers Earlier Through Elective mutation-based blood 
Collection and Testing) resulted in a sensitivity of 27% 
for all cancer types at a specificity of 98.9% with a positive 
predictive value (PPV) of 19.4% (tables 1 and 2).26 Meth-
ylation based clinical trials such as the PATHFINDER 
study revealed a sensitivity of 29% at a specificity of 99.1% 
with a PPV of 38% (tables  1 and 2).81 Both DETECT-A 
and the PATHFINDER PPVs highlight the existing chal-
lenges for pan-cancer early detection tests as opposed to 
scenarios of high-risk screening that may benefit from a 
liquid biopsy prescreen. More recently, the SYMPLIFY 
study assessed individuals with signs and symptoms that 
may be indicative of cancer using the Galleri MCED test 
(ISRCTN10226380) (table 2).82 Interestingly, this analysis 
consisted of 5461 individuals with symptoms and resulted 
in a sensitivity of 66.3% (95% CI 61.2 to 71.1) at a speci-
ficity of 98.4% (95% CI 98.1 to 98.8) with a PPV of 75.5% 
(95% CI 70.5 to 80.1). It is important to note that, while 
the assay applied in PATHFINDER and SYMPLIFY is 
the same, SYMPLIFY examined patients with symptoms 
such that the study population is different and must be 
considered when evaluating performances and future 
applications.

To improve early cancer detection performance from 
these intial studies, multiple clinical trials are ongoing 
focused on detection of a variety of cancer types (Table 
2), with the goal of achieving sensitivities in early stage 

disease that could clinically useful. One approach has 
been to integrate subsets of features including mutations, 
methylation, and genome-wide fragment characteristics 
in these analyses. Jamshidi and colleagues use a pan-
feature comprised of a 507 targeted gene panel that eval-
uated single nucleotide variants (SNV) and white-blood 
cell corrected-SNVs, whole-genome methylation (30× 
coverage), and whole-genome sequencing (30× coverage) 
subcategorized to independently assess the features 
of copy number alterations (CNA), white-blood cell 
corrected CNA, fragment endpoints, fragment lengths, 
and allelic imbalance.80 One limitation of this study was 
that fragment features were not combined together and 
compared with methylation as was reported to an extent 
in previous research from the same group.83 Bruhm et al., 
recently combined genome-wide fragmentation features 
and regional mutational signatures from low-coverage 
whole genome sequencing to show an increased perfor-
mance for cancer detection compared to either method 
alone.41 Orthogonal analyses as well as new approaches 
that reflect the underlying cfDNA biology and machine 
learning are still warranted to further confirm and extend 
such initial findings. Lastly, combining cfDNA features 
and emerging radiomics approaches may further improve 
detection especially in the context of high-risk screening.

Establishing clinical utility for early cancer detection tests
The National Cancer Institute of the USA defines clinical 
utility as ‘the likelihood that a test will, by prompting an 
intervention, result in an improved health outcome’.84 In 
the case of early cancer detection, the intervention that 
the test should inform/prompt is whether to proceed to 
confirmatory diagnostic testing and subsequent inter-
vention or to continue in the future with the recom-
mended regular screening. Because high sensitivity and 
high specificity are uncommon in a single test, tests are 
often divided into those that have high-enough sensitivity 
to effectively ‘rule-out’ the presence of cancer without a 
false-positive rate that causes substantial clinical burden 
and those that have high-enough specificity to ‘rule-in’ 
cancer at a sensitivity high enough to prove clinically 
useful. The ultimate and most clinically important objec-
tive of cancer screening is to reduce the likelihood that a 
screened individual dies of cancer. As the ultimate goal 
of cancer screening is to reduce cancer specific mortality, 
the ultimate endpoint would be cancer specific survival. 
As it easily can take over a decade to reliably evaluate this 
endpoint, as a rule, intermediate endpoints like a stage 
shift or detecting high-risk precursor lesions are used 
as alternatives. Care then must be taken that any inter-
mediate endpoints used are representative of ultimate 
outcome.30 85–88 For some cancer types, like prostate and 
perhaps breast cancer, a shift in stage at diagnosis could 
rather reflect the ability of the screening test to detect 
indolent cancers that otherwise would not become symp-
tomatic or impact the survival of the patient. As early 
cancer detection tests come of age, how do we safe-
guard against overdiagnosis of cancer? According to the 
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principles of screening (online supplemental table S2), 
do we adequately understand the natural histories of 
the types of cancer likely to be detected? Stage shift per 
se may not translate into improved outcomes for some 
cancer types, and other factors, such as the availability of 
effective treatments, matter more. Indeed, as the princi-
ples of screening point out (online supplemental table 
S2), there should be ‘follow-up care that will modify 
the natural history and clinical pathway for the disease 
or condition….’ With respect to early cancer detection 
testing, how would we determine the magnitude of stage 
shift needed for each cancer type that would result in a 
survival benefit? Are there interventions available that 
could modify the natural history and clinical pathway for 
every type of cancer that could be detected early? If not, 
how should we measure the clinical utility of early detec-
tion for these less treatable cancer types? The answers to 
these questions are even more pertinent in the case of 
ctDNA screening tests that can identify multiple different 
types of cancer at once. Addressing these important points 
may require the conduct of randomized controlled trials 
of testing versus no testing, with endpoints that include 
both 5-year cancer-specific survival and overall survival, 
along with parallel studies to measure quality of life of 
those tested and untested, and cost-effectiveness of testing 
and no-testing strategies.

Some have argued that the endpoint for early cancer 
detection tests should be all-cause mortality,89 because 
overall mortality is what matters most to patients, it 
minimizes the effects of misclassification of causes of 
death, and showing actual lives saved is the most direct 
demonstration that early cancer detection saves lives. 
Few cancer screening trials have demonstrated signifi-
cant improvements in all-cause mortality. The National 
Lung Screening Trial is the only single-cancer screening 
trial to demonstrate a significant reduction in all-cause 
mortality in a population with heavy smoking histories.1 
With median follow-up of 6.5 years, the rate of death from 
any cause was 6.7% lower (95% CI 1.2 to 13.6; p=0.02) 
in the arm that underwent low-dose computed tomog-
raphy (n=26,722) versus chest radiography (n=26,732). 
The multi-cancer Prostate Lung Colorectal Ovarian trial 
(n=154,887; median follow-up of 17 years) demonstrated 
a small but significant reduction in overall mortality (2%; 
p=0.036) for those in the screening arm versus the usual 
care arm, particularly for male participants.90 Because 
reduced overall mortality is harder to demonstrate in 
clinical trials, the use of such as cancer-specific mortality 
becomes more attractive.

CONSIDERATIONS FOR THE FUTURE
The promise of cfDNA-based approaches to cancer 
early detection is apparent, but the journey from 
discovery to clinical implementation is, and should 
be, methodical and thoughtful. Tests for cancers for 
which there is established strong evidence that earlier 
detection leads to improved clinical outcomes need to 

have strong sensitivity to be useful as adjunct or alter-
native screening approaches to established approaches. 
They also must be valid across the at-risk populations, 
and affordable to ensure their accessibility. The health 
economics of liquid biopsy screening will loom large as 
a concern until these tests become more affordable to 
more people.

Exactly how these tests will integrate into routine 
practice remains to be seen and will likely differ by test, 
depending on the intended use for which each test 
is validated (eg, as a novel screening pathway without 
precedent, a pathway parallel to an existing, established 
screening pathway, or a screening step preceding an 
existing, established diagnostic pathway). How each test 
fits into an overall cancer screening paradigm will affect 
how cost-effectiveness is weighed. At the moment there 
is a lack of empirical data on cost-effectiveness of these 
tests. Future studies should take into account the costs 
and healthcare resource utilization associated with use or 
disuse of the test, as well as the course of action taken 
following positive or negative test results. Factors such as 
static versus variable uptake of test use, as well as uptake 
of existing diagnostic procedures driven by test use can 
also affect cost-effectiveness.

Tests for multiple cancers face considerably more chal-
lenges and questions that need to be addressed, espe-
cially if the cancers potentially detected include those 
that are uncommon or rare, or hard to treat. In many 
cases, there is no established clinical approach to a gener-
alized cancer signal, and strategies to accompany these 
tests with a short list of the most likely tumor sites have yet 
to be clinically evaluated for their capacity to reduce the 
burden and risks of work-up of those signals. While at first 
it may seem intuitive what next step should be taken, the 
reality is that the history of cancer screening is one where 
the effort to streamline the evaluation of initial positives 
has been vexing.

Appropriate management strategies for many of the 
potential cancers detected by a multi-cancer test should 
be clearly defined (eg, best evidence-based therapies or 
interventions), as the evidence suggests that these tests 
identify a subset of disease that is generally more aggres-
sive.91 Whether standard therapeutic approaches to this 
subset are optimal is a question only clinical studies can 
answer. Proof of concept for multicancer tests, demon-
strating that they both provide benefits in terms of 
reducing cancer mortality and do not drive harm through 
false assurances when their results are negative (eg, by 
leading people to forego other recommended screening 
tests) are challenges that still need to be addressed. While 
we focused on cfDNA-based approaches, other blood-
based multiomics approaches that take advantage of 
protein or RNA markers are also in development. Ulti-
mately, combinations of DNA and non-DNA approaches 
may be implemented if shown to optimize test perfor-
mance and clinical utility.
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CONCLUSIONS
Great strides have been made in the development of 
cfDNA-based early cancer detection tests. Initial studies 
providing proof-of-principle evidence that these tests 
can detect cancer signals in asymptomatic or pre-
symptomatic individuals have given way now to clinical 
trials designed to establish the clinical utility of these 
tests. New approaches, including cfDNA fragmentation-
based methods, may allow for widespread accessibility of 
these tests in appropriate screening populations world-
wide. Many areas of investigation remain to be addressed 
before these tests are fully integrated into routine prac-
tice in a way that optimizes patient outcomes.
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