HIGH DOSE OF RHIL-10 ENHANCES CD8 T CELL AND NK CELL MEDIATED TUMOR CELL KILLING IN VITRO

1Elli Narvi, 2,3Janna Brunell, 1Anu Autio*, 1Aril Thotakura. 1Orion Corporation, Turku, Finland; 2University of Turku and Åbo Akademi University, Turku, Finland; 3University of Turku, Turku, Finland

Background Intratumoral activation and expansion of tumor-specific CD8 T cells is essential for successful immunotherapy. Interleukin-10 (IL-10) is known for its anti-inflammatory function, and at higher concentrations IL-10 activates cytotoxicity and enhances proliferation of CD8 T cells.1-4 In this study, we verified the presence of IL-10RA+CD8+ T cells in the tumor microenvironment (TME) and assessed the ability of high dose rhIL-10 to induce CD8+ T cell and NK cell proliferation and cytotoxicity in vitro.

Methods Healthy and cancerous tissue sections from various indications were stained for IL-10RA and CD8 co-expression. To study CD8 T and NK cell function, CD8 and NK cells were isolated from healthy donor PBMC. CD8 T cells were activated by anti-CD3+CD28 stimulation, and NK cells activated by rhIL-2+rhIL-15 stimulation, whereafter IL10RA expression was analysed by flow cytometry. After activation, CD8 and NK cells were co-cultured with prostate cancer cell line LNCaP, and imaged with Incucyte to assess functional properties, and IFNγ release was measured.

Results Tissue sections from cancer indications, including breast, brain, intestine, kidney, liver, lung, ovary, pancreas, and skin, have high number of CD8+ IL10-RA+ double positive cells compared to respective healthy tissues. However, only prostate cancer reached significantly higher double positive cells. Consistent with the published data, IL10-RA expression was upregulated in activated healthy donor CD8+ T cells (52 +/- 13% IL10-RA+CD8+ cells) in comparison to non-activated CD8+ T cells (7 +/-1% IL10RA+CD8+ cells). rhIL-10 dose-dependently induced CD8+ T cell proliferation and IFNγ release only in activated CD8+ T cells. In addition, GzmB was significantly elevated after 72 h of rhIL-10 treatment in CD8+ T cells. Activation of NK cells didn’t increase IL10RA expression. However, the receptor levels were already detectable at baseline (25% for both non-activated and activated). Addition of rhIL-10 in co-culture settings increased IFNγ release in activated CD8+ T cells (figure 1A). In killing assays, addition of rhIL-10 increased cancer cell killing in activated CD8+ and NK cells (figure 1B,C and 2B,C). Overnight incubation of rhIL-10 induced GzmB and IFNγ production in activated NK cells (figure 2A).

Conclusions Followed high dose of rhIL-10 treatment, activated CD8+ T cells and NK cells released cytotoxic cytokines and killed target cancer cells efficiently. This study adds further evidence to pre-existing research of IL-10 cytokine as a potential anti-tumoral treatment.

REFERENCES

Abstract 1044 Figure 1 (A) High dose of rhIL-10 (100 ng/mL) induces further IFNγ release in activated CD8 T cells after 72 h co-culture with cancer cells (LNCaP) measured by ELISA. (B) High dose rhIL-10 (100 ng/mL) further enhances killing of prostate cancer cells (LNCaP stained in red) in IncuCyte assay Caspase Green at 24 h after co-culture. (C) Killing capacity increases over time in rhIL-10 treated CD8 T cell group measured as apoptotic tumor cells over time.

Abstract 1044 Figure 2 (A) High dose of rhIL-10 (100 ng/mL) induces further Granzyme B activation in activated NK cells measured by flow cytometry. (B) High dose rhIL-10 (100 ng/mL) further enhances killing of prostate cancer cells (LNCaP stained in red) in IncuCyte assay Caspase Green at 24 h after co-culture. (C) Killing capacity increases over time in rhIL-10 treated NK cell group measured as apoptotic tumor cells over time.

http://dx.doi.org/10.1136/jitc-2023-SITC2023.1044