RESPONSES TO IMMUNOTHERAPY BASED ON PROGRAMMED DEATH-LIGAND 1 (PD-L1) COPY NUMBER VARIATION (CNV) STATUS IN PATIENTS WITH ADVANCED NON-SMALL CELL LUNG CANCER (NSCLC)

Aakash Desai*, Julia Naso, Caleb Smith, Yash Ashara, Beth Pitel, Anastasios Dinou, Kaushal Parikh, Aaron Mansfield, Julian Molina, Konstantinos Leventakos, Ying-Chun Lo. Mayo Clinic, Rochester, MN, USA

Background: Immunotherapy has shown promise in treating patients with metastatic NSCLC, but response rates vary. This study aims to investigate the relationship between PD-L1 CNV and response to immunotherapy in patients with NSCLC.

Methods: We conducted a retrospective analysis of patients who received immunotherapy, and were identified to have information on CNV status for PD-L1 through the MayoComplete Solid Tumor Panel (MCSTP) Next Generation Sequencing (NGS) assay. Response to therapy was evaluated using evidence of radiographic progression, date of death or date of last follow-up. Progression-free survival (PFS) and Overall survival (OS) were defined as time interval between date of initiation of immunotherapy to date of radiographic progression and date of death respectively.

Results: 98 patients were included in the study, most of whom had received immunotherapy as a first-line treatment (77%). The median age was 70.5 years (range: 39–88), and 64% were male. The most common histology was adenocarcinoma (68%), followed by squamous cell carcinoma (16%) and others (16%). We found that PD-L1 CNV was altered in 54% of patients with either heterozygous deletion (34%) or copy number gain (20%). We observed higher median PD-L1 CNV copy number gain compared to normal/deletions (80% vs 5%, p=0.0172) (table 1).

In terms of smoking status, 94% of patients had a history of smoking (84% former smokers, 10% current smokers and 6% never smokers). Most patients had stage IV disease at treatment initiation (68%), and the ECOG performance status was mostly 0 or 1 (78%). The median PFS and OS for the cohort was 5.4 and 23.8 months respectively (table 1). We observed improved response to immunotherapy with higher PD-L1 IHC% as has been reported previously. However, we did not find any significant differences in median PFS by presence (7.5 [normal] vs 5.0 months [altered], p=0.28) and type (7.5 [normal] vs 5.5 [deletion] vs 4.4 months [gain], p=0.56) of PD-L1 CNV alteration. Similarly, there were no significant differences in OS by presence (23.8 [normal] vs 26.6 [altered] months, p=0.38) and type (23.7 [normal] vs 26.6 [deletion] vs not reached [gain] months, p=0.51) of PD-L1 CNV alteration (figure 1).

Conclusions: Our study did not find any significant difference in median PFS and OS between patients with normal PD-L1 CNV and those with altered PD-L1 CNV, including different types of PD-L1 CNV alterations. Our study suggests that PD-L1 CNV status may not be a reliable predictive biomarker for response to immunotherapy in patients with advanced NSCLC.

Abstract 534 Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Count (n)</th>
<th>Proportion (%)</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td>98</td>
<td></td>
<td>69.6</td>
<td>70.5</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>63</td>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>35</td>
<td></td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adenocarcinoma</td>
<td>67</td>
<td></td>
<td>68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Squamous</td>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>15</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>PD-L1 Status</td>
<td><1%</td>
<td>24</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-49%</td>
<td>38</td>
<td></td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>50%</td>
<td>33</td>
<td></td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CNV Classification</td>
<td></td>
<td>45</td>
<td></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>33</td>
<td></td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heterozygous Deletion</td>
<td>33</td>
<td></td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copy Number Gain</td>
<td>20</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Smoking Status</td>
<td>Never</td>
<td>7</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Former</td>
<td>82</td>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>9</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECOG</td>
<td>0</td>
<td>31</td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>45</td>
<td></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CNS Disease</td>
<td>No</td>
<td>71</td>
<td></td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>27</td>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Line of Immunotherapy</td>
<td>First</td>
<td>75</td>
<td></td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>22</td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Third or more</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PFS (months)</td>
<td></td>
<td>66</td>
<td></td>
<td>5.4 (167 days)</td>
<td></td>
</tr>
<tr>
<td>OS (months)</td>
<td></td>
<td>38</td>
<td></td>
<td>23.8 (723 days)</td>
<td></td>
</tr>
</tbody>
</table>
Abstract 534 Figure 1 Overall survival (days)

http://dx.doi.org/10.1136/jitc-2023-SITC2023.0534