TTFIELDS THERAPY WITH AN IMMUNE CHECKPOINT INHIBITOR IN METASTATIC NON-SMALL CELL LUNG CANCER (mNSCLC) WITH PROGRESSION ON/AFTER PLATINUM-BASED THERAPY: HISTOLOGY SUBGROUPS IN THE PIVOTAL LUNAR STUDY

1Jeffrey Ward, 2Ticiana A Leal, 3Rupesh Kotecha, 4Rodrig Ramlau, 5Li Zhang, 6Janusz Milansko, 7Manuel Cabo Dols, 8Jaromír Roubeč, 9Ilios Petrubelka, 10Iktor Havel, 11Sujith Kalmadi, 12Zoran Andric, 13Thierry Berghmans, 14David E Gerber, 15Goetz Kloecker, 16Rajiv Panikkar, 17Joachim Aerts, 18Angelo Delmonte, 19Miklos Pless, 20Richard Grell, 21Christian Rollo, 22Wallace Akerley, 23Michael Eaton, 24Mussawar Iqbal, 25Corey Langer, 1Washington University School of Medicine, St Louis, MO, USA; 2Emory University School of Medicine, Atlanta, GA, USA; 3Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; 4Poznan University of Medical Sciences, Poznan, Poland; 5Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China; 6Medical University of Lublin, Lublin, Poland; 7Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Malaga, Spain; 8Vemocnice ALEG Ostrava-Vítkovice, Ostrava, Czech Republic; 9General University Hospital in Prague, Prague, Czech Republic; 10Thomayer Hospital, Prague, Czech Republic; 11Ironwood Cancer and Research Centers, Chandler, AZ, USA; 12Clinical Hospital Centre Banjanska Kosa, Belgrade, Serbia; 13Iules Bordet Institute, Hôpitaux Universitaires de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium; 14Harold C. Simmons Comprehensive Cancer Center, UT Texas Westernmost Medical Center, Dallas, TX, USA; 15University of Louisville, Louisville, KY, USA; 16Geisinger Cancer Institute, Danville, PA, USA; 17The Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands; 18IRCSS Istituto Ortopedico Rizzoli (IRST), Meldola, Italy; 19Kantonsspital Winterthur, Winterthur, Switzerland; 20Saarland Cancer Research Institute-Center for Clinical Cancer and Immunology Trials (SCRI-CCIT); Paracelsus Medical University, Salzburg, Austria; 21Cancer Cluster, Salzburg, Austria; 22Center for Thoracic Oncology, Tisch Cancer Institute at Icahn School of Medicine, New York, NY, USA; 23Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; 24St Francis Hospital, Indianapolis, IN, USA; 25College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada; 26Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Background Tumor Treating Fields (TTFields) are electric fields that disrupt cancer cell survival, leading to immunogenic cell death and enhanced antitumor immune responses. TTFields therapy delivered by a noninvasive portable device is FDA-approved for glioblastoma and mesothelioma. The global pivotal LUNAR study (NCT02973789) demonstrated improved overall survival (OS) for TTFields combined with investigator’s choice immune checkpoint inhibitor (ICI) or docetaxel (standard of care [SOC] at time of study design) vs SOC alone in patients with mNSCLC progressing on or after platinum-based therapy (HR 0.74; P=0.035).

Methods Adults with mNSCLC progressing on or after platinum therapy were randomized 1:1 to TTFields+ICI/docetaxel or ICI/docetaxel alone. TTFields (150 kHz) were delivered continuously until progression or intolerable toxicity. An exploratory analysis examined OS by histology and safety in the ICI subgroup.

Results Of 276 randomized patients, 134 (49%) assigned to receive an ICI had median age 65 years (range 23–86); 66% were male. 94% had received only one prior line of therapy. PD-L1 tumor proportion score (TPS; available for 76 patients) showed PD-L1-positive tumors (TPS ≥1%) were balanced between non-squamous and squamous subgroups (30/50 [60%] and 18/26 [69%]). TTFields+ICI vs ICI was also balanced for histology: non-squamous (37/66 [56%] vs 37/68 [54%]) and squamous (29/66 [44%] vs 31/68 [46%]). Median OS (mOS) was 18.5 months (mo) for TTFields+ICI vs 10.8 mo for ICI alone (HR 0.63 [95% CI 0.41–0.96]; P=0.03). mOS (95% CI) was 19.7 (8.8–31.1) mo vs 9.9 (5.6–22.2) mo; HR 0.63 (95% CI 0.36–1.21) P=0.11, and for squamous was 15.4 (9.6–35.4) mo vs 12.9 (9.6–19.3) mo; HR 0.69 (95% CI 0.37–1.30) P=0.25. Adverse event (AE) rates (all-cause) were comparable between TTFields+ICI (99%) and ICI alone (91%) groups; including pneumonitis (5% vs 6%) and other chemotherapy-related AEs. TTFields-related AEs occurred in 73% of ICI-treated patients; most were grade 1/2 local skin irritation; 5% reported a grade 3 AE. No grade 4 AEs or deaths were attributed to TTFields.

Conclusions Analysis of OS benefit in patients receiving TTFields with an ICI for mNSCLC after progression on or after platinum therapy did not detect a difference between squamous and non-squamous disease. OS benefit occurred without exacerbating the toxicity of ICI therapy.

Acknowledgements Medical writing support under the direction of the authors was provided by Chelsea Higgins, CMP (Global Publications, Novocure Inc, US), and Rose Goodchild and Melissa Purves, CMP (Prime, UK), funded by Novocure Inc.

Trial Registration ClinicalTrials.gov; NCT02973789

Ethics Approval All patients provided written informed consent. The study protocol and all amendments were approved by the relevant ethics committee and competent authority at each participating site. This study conformed to the ethical guidelines of the 1975 Declaration of Helsinki and was conducted in compliance with good clinical practice guidelines (EN ISO 14155:2011) and all relevant national/regional regulations.

http://dx.doi.org/10.1136/jitc-2023-SITC2023.0607