A PHASE I STUDY OF A TUMOR-TARGETED, FIBROBLAST ACTIVATION PROTEIN (FAP)-CD40 AGONIST (RO7300490) IN PATIENTS WITH ADVANCED SOLID TUMORS

I Ignacio Meier*, 2 Maria Lores Baradji, 3 Iben Spanggaard, 4 Dae Lee, 5 James Spicer, 6 Fiona C. Thistlethwaite, 7 Stefan Symeonides, 8 Do-Youn Oh, 9 Antoine Hollebecque, 10 Corinne Rusterholz, 11 Olivera Cirovic, 12 Yvonne Zhao, 13 Nicole Krostchfel, 14 Bernhard Reis, 15 Alexandra Epp, 16 Georgios Kazantzidis, 17 Victor Moreno. 1 Clinica Universidad de Navarra. CIMA, Pamplona, Spain; 2 Vall d’Hebron Institute of Oncology, Barcelona, Spain; 3 Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark; 4 University of Ulm College of Medicine, Seoul, Republic of Korea; 5 King’s College London, Guy’s Hospital, London, UK; 6 The Christie NHS Foundation Trust and University of Manchester, Manchester, UK; 7 Edinburgh Cancer Centre, NHS Lothian and Edinburgh Experimental Cancer Medicine Centre, University of Edinburgh, Edinburgh, UK; 8 Seoul National University Hospital, Seoul, Republic of Korea; 9 Gustave Roussy, Villejuif, France; 10 Roche Pharma Research and Early Development, Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland; 11 Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; 12 Roche Product Development Safety, Roche (China) Holding Ltd, Shanghai, China; 13 Roche Pharma Research and Early Development, Pharmaceutical Science, Basel, Switzerland; 14 Roche Pharma Research and Early Development, Early Development Oncology, Roche Innovation Center Munich, Munich, Germany; 15 Roche Data Science and Statistics, Biostatistics Oncology, Basel, Switzerland; 16 START Madrid-FJD, Hospital Fundación Jimenez Díaz, Madrid, Spain

Background FAP-CD40 is a second-generation, bispecific, FAP-targeted CD40 agonist antibody, which was developed to overcome systemic toxicities and the narrow therapeutic index of conventional anti-CD40 therapeutics.

FAP-CD40 was designed to specifically activate antigen-presenting cells when CD40 is crosslinked by FAP-positive cells in the tumor.

Methods This first-in-human study evaluated the safety, pharmacokinetics (PK), pharmacodynamics (PD), and anti-tumor activity of FAP-CD40 in adult patients with solid tumors considered to express FAP.

Patients diagnosed with locally advanced and/or metastatic solid tumor types that were not amenable to standard therapy, and with adequate bone marrow and organ function were eligible. FAP-CD40 was administered intravenously every 2 weeks until disease progression, unacceptable toxicity or other discontinuation criteria were met. A Bayesian model-based approach guided dose escalation.

Results Twenty-nine patients received FAP-CD40 in 6 cohorts at doses ranging from 16mg to 1100mg. Discontinuations were mainly due to progressive disease or symptomatic deterioration (79.3%).

No DLT was reported. Most adverse events (AE) were mild to moderate and non-serious. The most common treatment-related (TR) AE was low-grade arthralgia (31%). No Grade 4–5 TRAE was reported. Grade 3 TRAEs were reported in 2 patients. One single case of Grade 1 cytokine-release syndrome occurred. Three AEs led to treatment withdrawal, 2 of which were assessed related to FAP-CD40. There was no evidence of dose-related AE incidence or severity.

The best overall response was stable disease, which was achieved in 14/26 patients.

At lower doses, FAP-CD40 showed non-linear PK, which can be attributed to the saturation of peripheral CD40 binding sites, with a trend for linear PK at the higher doses. Persistent and full occupancy of CD40 receptors on circulating B cells was reached at the higher doses. A dose-dependent reduction of circulating B cells was also observed. There was no detectable effect of FAP-CD40 on peripheral cytokines and chemokines.

Conclusions FAP-CD40 was well tolerated up to the highest dose tested and the maximum tolerated dose was not reached. Toxicities were as anticipated and manageable. No objective response was achieved.

FAP-CD40 demonstrated target-mediated drug disposition with a sustained exposure at higher doses. Target engagement and peripheral PD effects aligned with expectations for a tumor-targeted mode of action.

In summary, targeting CD40 agonism to the tumor has led to a favorable safety profile at doses with strong and sustained target engagement, and supports further studies in combination with other anti-cancer therapies.

Acknowledgements The patients and their families The study investigators and members of the clinical study teams. F. Hoffmann-La Roche, Ltd, the study sponsor.

Trial Registration NCT04857138

Ethics Approval The study was approved by all relevant IRB/EC (CEIC de Navarra: EC 2021/2; HRA & HCRW: 21/FT/0031; De VK Region Hovedstaden: H-21017757; SNUH IRB: H-2104-078-1211; ASM IRB S2021-0747-0001); CPP Ile de France I: CPP1DF1-2022-0121-cat.1)

Study participants gave informed consent prior enrollment.

http://dx.doi.org/10.1136/jitc-2023-SITC2023.0617

Abstracts A1686